Search Results

Now showing 1 - 10 of 33
  • Item
    Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany)
    (Basel : MDPI, 2020) Herppich, Werner B.; Gusovius, Hans-Jörg; Flemming, Inken; Drastig, Katrin
    Hemp currently regains certain importance as fiber, oil and medical crop not least because of its modest requirements of biocides, fertilizer and water. During recent years, crops were exposed to a combination of drought and heat, even in northern Central-Europe. Dynamic responses of photosynthesis and stomatal conductance to these stresses and their persistent effects had been studied, if at all, in controlled environment experiments. Comprehensive field studies on diurnal and long-term net photosynthesis and gas exchange, and yield properties of hemp during a drought prone, high-temperature season in northern Central-Europe are obviously missing. Thus, in whole season field trails, the essential actual physiological (rates of net photosynthesis and transpiration, stomatal conductance, water use efficiencies, ambient and internal CO2 concentrations) and the yield performance of modern high-yielding multi-purpose hemp cultivars, ‘Ivory’ and ‘Santhica 27’, were evaluated under extreme environmental conditions and highly limited soil water supply. This provides comprehensive information on the usability of these cultivars under potential future harsh production conditions. Plants of both cultivars differentially cope with the prevailing climatic and soil water conditions. While ‘Ivory’ plants developed high rates of CO2 gain and established large leaf area per plant in the mid-season, those of ‘Santhica 27’ utilized lower CO2 uptake rates at lower leaf area per plant most time. This and the higher germination success of ‘Santhica 27’ resulted in nearly twice the yield compared to ‘Ivory’. Although stomatal control of CO2 gain was pronounced in both cultivars, higher stomatal limitations in ‘Ivory’ plants resulted in higher overall intrinsic water use efficiency. Cultivation of both hemp cultivars with only basic irrigation during seed germination was successful and without large effects on yield and quality. This was valid even under extremely hot and dry climatic conditions in northern Central Europe.
  • Item
    Factors That Influence Nitrous Oxide Emissions from Agricultural Soils as Well as Their Representation in Simulation Models: A Review
    (Basel : MDPI, 2021-4-14) Wang, Cong; Amon, Barbara; Schulz, Karsten; Mehdi, Bano
    Nitrous oxide (N2O) is a long-lived greenhouse gas that contributes to global warming. Emissions of N2O mainly stem from agricultural soils. This review highlights the principal factors from peer-reviewed literature affecting N2O emissions from agricultural soils, by grouping the factors into three categories: environmental, management and measurement. Within these categories, each impact factor is explained in detail and its influence on N2O emissions from the soil is summarized. It is also shown how each impact factor influences other impact factors. Process-based simulation models used for estimating N2O emissions are reviewed regarding their ability to consider the impact factors in simulating N2O. The model strengths and weaknesses in simulating N2O emissions from managed soils are summarized. Finally, three selected process-based simulation models (Daily Century (DAYCENT), DeNitrification-DeComposition (DNDC), and Soil and Water Assessment Tool (SWAT)) are discussed that are widely used to simulate N2O emissions from cropping systems. Their ability to simulate N2O emissions is evaluated by describing the model components that are relevant to N2O processes and their representation in the model.
  • Item
    Near Real-Time Biophysical Rice (Oryza sativa L.) Yield Estimation to Support Crop Insurance Implementation in India
    (Basel : MDPI, 2020) Arumugam, Ponraj; Chemura, Abel; Schauberger, Bernhard; Gornott, Christoph
    Immediate yield loss information is required to trigger crop insurance payouts, which are important to secure agricultural income stability for millions of smallholder farmers. Techniques for monitoring crop growth in real-time and at 5 km spatial resolution may also aid in designing price interventions or storage strategies for domestic production. In India, the current government-backed PMFBY (Pradhan Mantri Fasal Bima Yojana) insurance scheme is seeking such technologies to enable cost-efficient insurance premiums for Indian farmers. In this study, we used the Decision Support System for Agrotechnology Transfer (DSSAT) to estimate yield and yield anomalies at 5 km spatial resolution for Kharif rice (Oryza sativa L.) over India between 2001 and 2017. We calibrated the model using publicly available data: namely, gridded weather data, nutrient applications, sowing dates, crop mask, irrigation information, and genetic coefficients of staple varieties. The model performance over the model calibration years (2001–2015) was exceptionally good, with 13 of 15 years achieving more than 0.7 correlation coefficient (r), and more than half of the years with above 0.75 correlation with observed yields. Around 52% (67%) of the districts obtained a relative Root Mean Square Error (rRMSE) of less than 20% (25%) after calibration in the major rice-growing districts (>25% area under cultivation). An out-of-sample validation of the calibrated model in Kharif seasons 2016 and 2017 resulted in differences between state-wise observed and simulated yield anomalies from –16% to 20%. Overall, the good ability of the model in the simulations of rice yield indicates that the model is applicable in selected states of India, and its outputs are useful as a yield loss assessment index for the crop insurance scheme PMFBY.
  • Item
    Incorporating Biodiversity into Biogeochemistry Models to Improve Prediction of Ecosystem Services in Temperate Grasslands: Review and Roadmap
    (Basel : MDPI, 2020) Van Oijen, Marcel; Barcza, Zoltán; Confalonieri, Roberto; Korhonen, Panu; Kröel-Dulay, György; Lellei-Kovács, Eszter; Louarn, Gaëtan; Louault, Frédérique; Martin, Raphaël; Moulin, Thibault; Movedi, Ermes; Picon-Cochard, Catherine; Rolinski, Susanne; Viovy, Nicolas; Wirth, Stephen Björn; Bellocchi, Gianni
    Multi-species grasslands are reservoirs of biodiversity and provide multiple ecosystem services, including fodder production and carbon sequestration. The provision of these services depends on the control exerted on the biogeochemistry and plant diversity of the system by the interplay of biotic and abiotic factors, e.g., grazing or mowing intensity. Biogeochemical models incorporate a mechanistic view of the functioning of grasslands and provide a sound basis for studying the underlying processes. However, in these models, the simulation of biogeochemical cycles is generally not coupled to simulation of plant species dynamics, which leads to considerable uncertainty about the quality of predictions. Ecological models, on the other hand, do account for biodiversity with approaches adopted from plant demography, but without linking the dynamics of plant species to the biogeochemical processes occurring at the community level, and this hampers the models’ capacity to assess resilience against abiotic stresses such as drought and nutrient limitation. While setting out the state-of-the-art developments of biogeochemical and ecological modelling, we explore and highlight the role of plant diversity in the regulation of the ecosystem processes underlying the ecosystems services provided by multi-species grasslands. An extensive literature and model survey was carried out with an emphasis on technically advanced models reconciling biogeochemistry and biodiversity, which are readily applicable to managed grasslands in temperate latitudes. We propose a roadmap of promising developments in modelling.
  • Item
    Particulate Matter Dispersion Modeling in Agricultural Applications: Investigation of a Transient Open Source Solver
    (Basel : MDPI, 2021) Janke, David; Swaminathan, Senthilathiban; Hempel, Sabrina; Kasper, Robert; Amon, Thomas
    Agriculture is a major emitter of particulate matter (PM), which causes health problems and can act as a carrier of the pathogen material that spreads diseases. The aim of this study was to investigate an open-source solver that simulates the transport and dispersion of PM for typical agricultural applications. We investigated a coupled Eulerian–Lagrangian solver within the open source software package OpenFOAM. The continuous phase was solved using transient large eddy simulations, where four different subgrid-scale turbulence models and an inflow turbulence generator were tested. The discrete phase was simulated using two different Lagrangian solvers. For the validation case of a turbulent flow of a street canyon, the flowfield could be recaptured very well, with errors of around 5% for the non-equilibrium turbulence models (WALE and dynamicKeq) in the main regions. The inflow turbulence generator could create a stable and accurate boundary layer for the mean vertical velocity and vertical profile of the turbulent Reynolds stresses R11. The validation of the Lagrangian solver showed mixed results, with partly good agreements (simulation results within the measurement uncertainty), and partly high deviations of up to 80% for the concentration of particles. The higher deviations were attributed to an insufficient turbulence regime of the used validation case, which was an experimental chamber. For the simulation case of PM dispersion from manure application on a field, the solver could capture the influence of features such as size and density on the dispersion. The investigated solver is especially useful for further investigations into time-dependent processes in the near-source area of PM sources.
  • Item
    Carbon Budget of an Agroforestry System after Being Converted from a Poplar Short Rotation Coppice
    (Basel : MDPI, 2020) Pecchioni, Giovanni; Bosco, Simona; Volpi, Iride; Mantino, Alberto; Dragoni, Federico; Giannini, Vittoria; Tozzini, Cristiano; Mele, Marcello; Ragaglini, Giorgio
    Poplar (Populus L. spp.) Short Rotation Coppice systems (SRCs) for bioenergy production are being converted back to arable land. Transitioning to Alley Cropping Systems (ACSs) could be a suitable strategy for integrating former tree rows and arable crops. A field trial (Pisa, Central Italy) was set up with the aim of assessing the C storage of an ACS system based on hybrid poplar and sorghum (Sorghum bicolor L. Moench) and comparing it with that of an SRC cultivation system. The carbon budget at the agroecosystem scale was assessed in the first year of the transition using the net biome production (NBP) approach with a simplified method. The overall NBP for the SRC was positive (96 ± 40 g C m−2 year−1), highlighting that the system was a net carbon sink (i.e., NBP > 0). However, the ACS registered a net C loss (i.e., NBP < 0), since the NBP was −93 ± 56 g C m−2 year−1. In the first year of the transition, converting the SRC into an ACS counteracted the potential beneficial effect of C storage in tree belowground biomass due to the high heterotrophic respiration rate recorded in the ACS, which was fostered by the incorporation of residues and tillage disturbance in the alley. Additional years of heterotrophic respiration measurements could allow for an estimate of the speed and extent of C losses.
  • Item
    Hydrothermal Carbonization and Pyrolysis of Sewage Sludge: Effects on Lolium perenne Germination and Growth
    (Basel : MDPI, 2019) Paneque, Marina; Knicker, Heike; Kern, Jürgen; De la Rosa, José María
    The pyrolysis and hydrothermal carbonization (HTC) of sewage sludge (SS) resulted in products free of pathogens, with the potential for being used as soil amendment. With this work, we evaluated the impact of dry pyrolysis-treated (600 °C, 1 h) and HTC-treated (200 °C, 260 °C; 0.5 h, 3 h) SS on the germination, survival, and growth of Lolium perenne during an 80 day greenhouse experiment. Therefore, the hydrochars and pyrochars were amended to a Calcic Cambisol at doses of 5 and 25 t ha−1. The addition of sludge pyrochars to the Cambisol did not affect Lolium germination, survival rates or plant yields. However, the use 25 t ha−1 of wood biochar reduced germination and survival rates, which may be related to the low N availability of this sample. In comparison to the control, higher or equal plant biomass was produced in the hydrochar-amended pots, even though some hydrochars decreased plant germination and survival rates. Among all the evaluated char properties, only the organic and inorganic N contents of the chars, along with their organic C values, positively correlated with total and shoot biomass production. Our work demonstrates the N fertilization potential of the hydrochar produced at low temperature, whereas the hydrochar produced at 260 °C and the pyrochars were less efficient with respect to plant yields.
  • Item
    Simultaneous Calibration of Grapevine Phenology and Yield with a Soil–Plant–Atmosphere System Model Using the Frequentist Method
    (Basel : MDPI, 2021-8-20) Yang, Chenyao; Menz, Christoph; Fraga, Helder; Reis, Samuel; Machado, Nelson; Malheiro, Aureliano C.; Santos, João A.
    Reliable estimations of parameter values and associated uncertainties are crucial for crop model applications in agro-environmental research. However, estimating many parameters simultaneously for different types of response variables is difficult. This becomes more complicated for grapevines with different phenotypes between varieties and training systems. Our study aims to evaluate how a standard least square approach can be used to calibrate a complex grapevine model for simulating both the phenology (flowering and harvest date) and yield of four different variety–training systems in the Douro Demarcated Region, northern Portugal. An objective function is defined to search for the best-fit parameters that result in the minimum value of the unweighted sum of the normalized Root Mean Squared Error (nRMSE) of the studied variables. Parameter uncertainties are estimated as how a given parameter value can determine the total prediction variability caused by variations in the other parameter combinations. The results indicate that the best-estimated parameters show a satisfactory predictive performance, with a mean bias of −2 to 4 days for phenology and −232 to 159 kg/ha for yield. The corresponding variance in the observed data was generally well reproduced, except for one occasion. These parameters are a good trade-off to achieve results close to the best possible fit of each response variable. No parameter combinations can achieve minimum errors simultaneously for phenology and yield, where the best fit to one variable can lead to a poor fit to another. The proposed parameter uncertainty analysis is particularly useful to select the best-fit parameter values when several choices with equal performance occur. A global sensitivity analysis is applied where the fruit-setting parameters are identified as key determinants for yield simulations. Overall, the approach (including uncertainty analysis) is relatively simple and straightforward without specific pre-conditions (e.g., model continuity), which can be easily applied for other models and crops. However, a challenge has been identified, which is associated with the appropriate assumption of the model errors, where a combination of various calibration approaches might be essential to have a more robust parameter estimation.
  • Item
    Food safety, a global challenge
    (Basel : MDPI, 2015) Uyttendaele, Mieke; Franz, Eelco; Schlüter, Oliver
    To provide more food and make use of precious water and nutrient resources, communities increasingly value sustainable food production. However, this should be done safely to maximize public health gains and environmental benefits. Food safety is being challenged nowadays by the global dimensions of food supply chains, the need for reduction of food waste and efficient use of natural resources such as clean water. Food safety deals with safeguarding the own national food supply chain from the introduction, growth or survival of hazardous microbial and chemical agents. But within a larger international context, borders are fading and surely this is the case for foodstuffs which are an important globally traded commodity. There is great divergence in the degree of organization, infrastructure, teaching capacity across countries and food protection (food quality, food preservation, food safety) needs to be tackled globally. This special issue assembled topics in food safety, with case studies of food safety concerns from various parts of the world, research on risk factors in agricultural production of fresh produce, use of water and water treatment technologies in food production, and outlooks on food safety for vulnerable persons. The main conclusion throughout all papers is that ensuring food safety of the food supply chain is a continuous challenge and needs our attention.
  • Item
    Options for optimizing the drying process and reducing dry matter losses in whole-tree storage of poplar from short-rotation coppices in Germany
    (Basel : MDPI, 2020) Pecenka, Ralf; Lenz, Hannes; Hering, Thomas
    For sustainable production of wood in short-rotation coppices and agroforestry systems, it is necessary to optimize the storage processes to achieve low dry matter losses together with low-cost drying. The harvesting of the trees can be carried out very efficiently with modified forage harvesters or tractor-powered mower-chippers. The wood chips produced can be dried naturally at low cost in open-air piles. However, this type of storage is connected with high dry matter losses of up to about one fourth in the course of seven-month storage. Although harvesting whole trees is connected with significantly higher costs, lower dry matter losses are to be expected from storing the trees in piles. Consequently, in this study, the storage and drying behavior of poplar under different German weather conditions and depending on the structure of the storage piles has been examined in detail. After a seven-months storage period, the trees still displayed moisture contents of 41–44% following an initial moisture content of 56% but achieved very low dry matter losses of only 4–7%. Moisture contents of 35–39% could only be achieved in October after a further two-months drying period under favorable weather conditions. All storage piles were built up on approximately 30 cm high support timbers for better ventilation. Additionally, covering the ground with a fleece did not have any influence on the drying behavior, nor did different pile heights. Smaller tree trunk diameters are not only connected with a higher share of bark or ash, but also thinner trunks tend to become damp again more quickly after rainfall. That is why whole-tree storage is suitable above all for medium or longer rotation periods with which, under favorable conditions, the higher harvesting costs can be compensated by a higher wood chip quality and lower storage losses.