Search Results

Now showing 1 - 3 of 3
  • Item
    On the Complexity of Attacking Elliptic Curve Based Authentication Chips
    (Amsterdam [u.a.] : Elsevier, 2021) Kabin, Ievgen; Dyka, Zoya; Klann, Dan; Schaeffner, Jan; Langendoerfer, Peter
    In this paper we discuss the difficulties of mounting successful attacks against crypto implementations if essential information is missing. We start with a detailed description of our attack against our own design, to highlight which information is needed to increase the success of an attack, i.e. we use it as a blueprint to the following attack against commercially available crypto chips. We would like to stress that our attack against our own design is very similar to what happens during certification e.g. according to the Common Criteria Standard as in those cases the manufacturer needs to provide detailed information. If attacking commercial designs without signing NDAs, we were forced to intensively search the Internet for information about the designs. We were able to reveal information on the processing sequence during the authentication process even as detailed as identifying the clock cycles in which the individual key bits are processed. But we could not reveal the private keys used by the attacked commercial authentication chips 100% correctly. Moreover, as we did not knew the used keys we could not evaluate the success of our attack. To summarize, the effort of such an attack is significantly higher than the one of attacking a well-known implementation.
  • Item
    Precise Laplace asymptotics for singular stochastic PDEs: The case of 2D gPAM
    (Amsterdam [u.a.] : Elsevier, 2022) Friz, Peter K.; Klose, Tom
    We implement a Laplace method for the renormalised solution to the generalised 2D Parabolic Anderson Model (gPAM) driven by a small spatial white noise. Our work rests upon Hairer's theory of regularity structures which allows to generalise classical ideas of Azencott and Ben Arous on path space as well as Aida and Inahama and Kawabi on rough path space to the space of models. The technical cornerstone of our argument is a Taylor expansion of the solution in the noise intensity parameter: We prove precise bounds for its terms and the remainder and use them to estimate asymptotically irrevelant terms to arbitrary order. While most of our arguments are not specific to gPAM, we also outline how to adapt those that are.
  • Item
    On complex dynamics in a Purkinje and a ventricular cardiac cell model
    (Amsterdam [u.a.] : Elsevier, 2020) Erhardt, André H.; Solem, Susanne
    Cardiac muscle cells can exhibit complex patterns including irregular behaviour such as chaos or (chaotic) early afterdepolarisations (EADs), which can lead to sudden cardiac death. Suitable mathematical models and their analysis help to predict the occurrence of such phenomena and to decode their mechanisms. The focus of this paper is the investigation of dynamics of cardiac muscle cells described by systems of ordinary differential equations. This is generically performed by studying a Purkinje cell model and a modified ventricular cell model. We find chaotic dynamics with respect to the leak current in the Purkinje cell model, and EADs and chaos with respect to a reduced fast potassium current and an enhanced calcium current in the ventricular cell model — features that have been experimentally observed and are known to exist in some models, but are new to the models under present consideration. We also investigate the related monodomain models of both systems to study synchronisation and the behaviour of the cells on macro-scale in connection with the discovered features. The models show qualitatively the same behaviour to what has been experimentally observed. However, for certain parameter settings the dynamics occur within a non-physiological range.