Search Results

Now showing 1 - 2 of 2
  • Item
    Effect of Subsurface Microstructures on Adhesion of Highly Confined Elastic Films
    (New York, NY : ASME, 2021) Samri, Manar; Kossa, Attila; Hensel, René
    Polymer adhesive films sandwiched between two rigid solids are a common bonding strategy. The mechanics and consequently the adhesion of such geometrically confined films depend mainly on their thickness, Young's modulus, and the Poisson's ratio of the material. In this work, we explore the effect of a micropatterned subsurface embedded into the adhesive layer. We compare experiments with three-dimensional numerical simulations to evaluate the impact of the microstructure on the contact stiffness and effective modulus. The results are used to extend a previously proposed size scaling argument on adhesion from incompressible to slightly compressible films to account for the silicone used in our study with a Poisson's ratio of 0.495. In addition, interfacial stress distributions between the elastic film and the glass disc are obtained from plane strain simulations to evaluate characteristic adhesion failures such as edge cracks and cavitation. Overall, the micropatterned subsurface has a large impact on the contact stiffness, the interfacial stress distribution, and the detachment behavior; however, the adhesion performance is only slightly improved in comparison to a non-patterned subsurface.
  • Item
    On the adhesion between thin sheets and randomly rough surfaces
    (Lausanne : Frontiers Media, 2022) Wang , Anle; Müser, Martin H.
    Thin, elastic sheets are well known to adapt to rough counterfaces, whereby adhesive interactions and pull-off stresses σp can be significant, yet no generally applicable, quantitative guideline has been suggested hitherto as to when a sheet should be considered thin enough to be sticky. Using computer simulations, we find that the dependence of σp on surface energy γ has a high and a low-pull-off-stress regime. For randomly rough surfaces, we locate the dividing line at the point, where γ is approximately half the elastic energy per unit area needed to make conformal contact, which is the same ratio as for semi-infinite elastic solids. This rule of thumb also applies to a certain degree for single-wavelength roughness, in which case the transition from low to high stickiness occurs when at the moment of maximum tension contact is not only broken at the height maxima but also at the saddle points.