Search Results

Now showing 1 - 10 of 11
  • Item
    Tunable Circular Dichroism by Photoluminescent Moiré Gratings
    (Weinheim : Wiley-VCH, 2020) Aftenieva, Olha; Schnepf, Max; Mehlhorn, Börge; König, Tobias A.F.
    In nanophotonics, there is a current demand for ultrathin, flexible nanostructures that are simultaneously easily tunable, demonstrate a high contrast, and have a strong response in photoluminescent polarization. In this work, the template-assisted self-assembly of water-dispersed colloidal core–shell quantum dots into 1D light-emitting sub-micrometer gratings on a flexible substrate is demonstrated. Combining such structures with a light-absorbing metallic counterpart by simple stacking at various angles results in a tunable Moiré pattern with strong lateral contrast. Furthermore, a combination with an identical emitter-based grating leads to a chiroptical effect with a remarkably high degree of polarization of 0.72. Such a structure demonstrates direct circular polarized photoluminescence, for the first time, without a need for an additional chiral template as an intermediary. The suggested approach allows for reproducible, large-area manufacturing at reasonable costs and is of potential use for chiroptical sensors, photonic circuit applications, or preventing counterfeit. © 2020 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Tailoring Plasmonics of Au@Ag Nanoparticles by Silica Encapsulation
    (Weinheim : Wiley-VCH, 2021) Schultz, Johannes; Kirner, Felizitas; Potapov, Pavel; BĂ¼chner, Bernd; Lubk, Axel; Sturm, Elena V.
    Hybrid metallic nanoparticles (NPs) encapsulated in oxide shells are currently intensely studied for plasmonic applications in sensing, medicine, catalysis, and photovoltaics. Here, a method for the synthesis of Au@Ag@SiO2 cubes with a uniform silica shell of variable and adjustable thickness in the nanometer range is introduced and their excellent, highly reproducible, and tunable optical response is demonstrated. Varying the silica shell thickness, the excitation energies of the single NP plasmon modes can be tuned in a broad spectral range between 2.55 and 3.25 eV. Most importantly, a strong coherent coupling of the surface plasmons is revealed at the silver–silica interface with Mie resonances at the silica–vacuum interface leading to a significant field enhancement at the encapsulated NP surface in the range of 100% at shell thicknesses t ≃ 20 nm. Consequently, the synthesis method and the field enhancement open pathways to a widespread use of silver NPs in plasmonic applications including photonic crystals and may be transferred to other non-precious metals. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Fabrication of four-level hierarchical topographies through the combination of LIPSS and direct laser interference pattering on near-beta titanium alloy
    (New York, NY [u.a.] : Elsevier, 2022) Schell, Frederic; Alamri, Sabri; Hariharan, Avinash; Gebert, Annett; Lasagni, AndrĂ©s FabiĂ¡n; Kunze, Tim
    Complex repetitive periodic surface patterns were produced on a near-beta Ti-13Nb-13Zr alloy, using two-beam Direct Laser Interference Patterning (DLIP) employing a picosecond-pulsed laser source with wavelengths of 355 nm, 532 nm and 1064 nm. Different types of Laser-induced periodic surface structures (LIPSS) are produced, including low and high spatial frequency LIPSS, which are observed frequently on top of the line-like DLIP microstructures, as well as quasi-periodic microstructures with periods greater than the laser wavelength. The feature size of the fabricated LIPSS features could be tuned as function of the utilized laser process parameters.
  • Item
    Short range order and topology of binary Ge-S glasses
    (Lausanne : Elsevier, 2022) Pethes, I.; JĂ³vĂ¡ri, P.; Michalik, S.; Wagner, T.; Prokop, V.; Kaban, I.; SzĂ¡raz, D.; Hannon, A.; Krbal, M.
    Short range order and topology of GexS100-x glasses over a broad composition range (20 ≤ x ≤ 42 in at%) was investigated by neutron diffraction, X-ray diffraction, and Ge K-edge extended X-ray absorption fine structure (EXAFS) measurements. The experimental data sets were fitted simultaneously in the framework of the reverse Monte Carlo simulation method. It was found that both constituents (Ge and S) satisfy the Mott-rule in all investigated glasses: Ge and S atoms have 4 and 2 neighbours, respectively. The structure of these glasses can be described with the chemically ordered network model: Ge-S bonds are preferred; S-S bonds are present only in S-rich glasses. Dedicated simulations showed that Ge-Ge bonds are necessary in Ge-rich glasses. Connections between Ge atoms (such as edge-sharing GeS4/2 tetrahedra) in stoichiometric and S-rich glasses were analysed. The frequency of primitive rings was also calculated.
  • Item
    Study of TiAl thin films on piezoelectric CTGS substrates as an alternative metallization system for high-temperature SAW devices
    (Rio de Janeiro : Elsevier, 2021) Seifert, Marietta; Lattner, Eric; Menzel, Siegfried B.; Oswald, Steffen; Gemming, Thomas
    Ti/Al multilayer films with a total thickness of 200 nm were deposited on the high-temperature (HT) stable piezoelectric Ca3TaGa3Si2O14 (CTGS) as well as on thermally oxidized Si (SiO2/Si) reference substrates. The Ti–Al films were characterized regarding their suitability as an alternative metallization for electrodes in HT surface acoustic wave devices. These films provide the advantage of significantly lower costs and in addition also a significantly lower density as compared to Pt, which allows a greater flexibility in device design. To realize a thermal stability of the films, AlNO cover as well as barrier layers at the interface to the substrate were applied. The samples were annealed for 10 h at up to 800 °C in high vacuum (HV) and at 600 °C in air and analyzed regarding the γ-TiAl phase formation, film morphology, and possible degradation. The Ti/Al films were prepared either by magnetron sputtering or by e-beam evaporation and the different behavior arising from the different deposition method was analyzed and discussed. For the evaporated Ti/Al films, AlNO barriers with a lower O content were used to evaluate the influence of the composition of the AlNO on the HT stability. The sputter-deposited Ti/Al films showed an improved γ-TiAl phase formation and HT stability (on SiO2/Si up to 800 °C in HV and 600 °C in air, on CTGS with a slight oxidation after annealing at 800 °C in HV) as compared to the evaporated samples, which were only stable up to 600 °C in HV and in air.
  • Item
    Novel low modulus beta-type Ti–Nb alloys by gallium and copper minor additions for antibacterial implant applications
    (Rio de Janeiro : Elsevier, 2022) Alberta, Ludovico Andrea; Vishnu, Jithin; Hariharan, Avinash; Pilz, Stefan; Gebert, Annett; Calin, Mariana
    This study aims to develop novel low-modulus, corrosion-resistant Ti-based alloys with enhanced antimicrobial properties for bone-related implant applications. Novel β-type (Ti–45Nb)-based alloys with minor additions of the antibacterial elements Ga and/or Cu (up to 4 wt.%) were produced by a two-step casting process followed by homogenization treatment. Three nominal compositions (Ti–45Nb)96-4 Ga, (Ti–45Nb)96–4Cu and (Ti–45Nb)96-2 Ga–2Cu (wt.%) were prepared based on alloy design approach using [Mo]eq and electron per atom (e/a) ratio. The influence of Ga and/or Cu addition on the phase constitution, mechanical response and corrosion characteristics in simulated body fluids (PBS, 37.5 Â°C) has been investigated. X-ray diffraction studies displayed a single β phase structure for all alloys, with an observed lattice contraction evidenced by the reduction of lattice parameters during Rietveld analysis. Homogenous equiaxed microstructures with grain sizes ranging from 55 Î¼m up to 323 Î¼m were observed for (Ti–45Nb)96-4 Ga, (Ti–45Nb)96-2 Ga–2Cu and (Ti–45Nb)96–4Cu alloys. The alloys displayed excellent plasticity with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, maximum tensile strain and elastic energy were measured in the ranges of 544–681 MPa, 73–78 GPa, 17–28% and 2.5–3.7 MJ/m3, in the order (Ti–45Nb)96-4 Ga > (Ti–45Nb)96-2 Ga–2Cu > (Ti–45Nb)96–4Cu. In addition, it has been observed that micro-alloying Ti–Nb alloy with Ga and/or Cu posed no deleterious effect on the corrosion resistance in simulated body fluid conditions. The improvement in strength of the developed alloys has been discussed based on grain boundary and solid-solution strengthening, whereas the improved plasticity is attributed to work hardening.
  • Item
    Effect of scanning strategy on microstructure and mechanical properties of a biocompatible Ti–35Nb–7Zr–5Ta alloy processed by laser-powder bed fusion
    (Berlin : Springer, 2022) Batalha, Weverson Capute; Batalha, Rodolfo Lisboa; Kosiba, Konrad; Kiminami, Claudio Shyinti; Gargarella, Piter
    The influence of scanning strategy (SS) on microstructure and mechanical properties of a Ti–35Nb–7Zr–5Ta alloy processed by laser-powder bed fusion (L-PBF) is investigated for the first time. Three SSs are considered: unidirectional-Y; bi-directional with 79° rotation (R79); and chessboard (CHB). The SSs affect the type and distribution of pores. The highest relative densities and more homogeneous distribution of pores are obtained with R79 and CHB scanning strategies, whereas aligned pores are formed in the unidirectional-Y. The SSs show direct influence on the crystallographic texture with unidirectional-Y strategy showing fiber texture. The R79 strategy results in a weak texture and the CHB scanning strategy forms a randomly oriented heterogeneous grain structure. The lowest Young modulus is obtained with the unidirectional-Y strategy, whereas the R79 strategy results in the highest yield strength. It is shown that the SSs may be used for tuning the microstructure of a beta-Ti alloy in L-PBF.
  • Item
    Influence of isothermal omega precipitation aging on deformation mechanisms and mechanical properties of a β-type Ti-Nb alloy
    (Lausanne : Elsevier, 2022) Pilz, S.; Hariharan, A.; GĂ¼nther, F.; Zimmermann, M.; Gebert, A.
    In this study, the influence of ωiso precipitates on the active deformation mechanisms and the mechanical properties of the biomedical β-type Ti-40Nb alloy are revealed. Low temperature heat treatments (aging) at 573 K for durations up to 108.0 ks were carried out for a cold-rolled and recrystallized sample state. After an aging time of 3.6 ks the ωiso phase was determined by means of synchrotron XRD and the fraction and the crystallite size of ωiso increased progressively with increasing aging time. Due to the high intrinsic Young's modulus of the ωiso phase, the Young's modulus increased gradually with the aging time from 63 GPa, for the recrystallized reference condition, to values of 70 GPa (3.6 ks), 73 GPa (14.4 ks), 81 GPa (28.8 ks) and 96 GPa (108.0 ks). Depending on the aging time, also a change of the active deformation mechanisms occurred, resulting in significantly altered mechanical properties. For the single β-phase reference microstructure, stress-induced martensite (SIM) formation, {332} <113> twinning and dislocation slip were observed under tensile loading, resulting in a low 0.2% proof stress of around 315 MPa but a high elongation at fracture of 26.2%. With increasing aging time, SIM formation and mechanical twinning are progressively hindered under tensile loading. SIM formation could not be detected for samples aged longer than 3.6 ks. The amount and thickness of deformation twins is clearly reduced with increasing aging time and for samples aged longer than 14.4 ks deformation twinning is completely suppressed. As a result of the changed deformation mechanisms and the increase of the critical stress for slip caused by ωiso, the 0.2% proof stress of the aged samples increased gradually from 410 MPa (3.6 ks) to around 910 MPa (108.0 ks). With regard to application as new bone implant material, a balanced ratio of a low Young's modulus of E = 73 GPa and higher 0.2% proof stress of 640 MPa was achieved after an aging time of 14.4 ks.
  • Item
    Long-term high-temperature behavior of Ti–Al based electrodes for surface acoustic wave devices
    (Rio de Janeiro : Elsevier, 2022) Seifert, Marietta; Leszczynska, Barbara; Menzel, Siegfried; Gemming, Thomas
    The long-term high-temperature behavior of Ti–Al based electrodes for the application in surface acoustic wave (SAW) sensor devices was analyzed. The electrodes were obtained by e-beam evaporation of Ti/Al multilayers on the high-temperature stable piezoelectric Ca3TaGa3Si2O14 (CTGS) substrates and structuring via the lift-off process. AlNO (25 at.% Al; 60 at.% N and 15 at.% O) cover and barrier layers were applied as protection against oxidation from the surrounding atmosphere and to prohibit a chemical reaction with the substrate. The samples were annealed at temperatures up to 600 °C in air for a duration of up to 192 h. Scanning and transmission electron microscopy were used to evaluate the morphology and degradation of the electrodes as well as of the extended contact pads. The results revealed that the Ti–Al based electrodes remained unoxidized after annealing for 192 h at 400 and 500 °C and for 24 h at 600 °C. After the heat treatment for 192 h at 600 °C, a strong oxidation of the structured electrodes occurred, which was less pronounced within the pads. In summary, the investigation showed that Ti–Al based SAW devices are a cost efficient alternative for long-term applications up to at least 500 °C and short- and medium-term applications up to 600 °C.
  • Item
    Anelastic-like nature of the rejuvenation of metallic glasses by cryogenic thermal cycling
    (Amsterdam [u.a.] : Elsevier Science, 2022) Costa, Miguel B.; Londoño, Juan J.; Blatter, Andreas; Hariharan, Avinash; Gebert, Annett; Carpenter, Michael A.; Greer, A. Lindsay
    Cryogenic thermal cycling (CTC) is an effective treatment for improving the room-temperature plasticity and toughness in metallic glasses. Despite considerable attention to characterizing the effects of CTC, they remain poorly understood. A prominent example is that, contrary to expectation, the stored energy in a metallic glass first rises, and then decreases, as CTC progresses. In this work, CTC is applied to bulk metallic glasses based on Pd, Pt, Ti, or Zr. The effects on calorimetric and mechanical properties are evaluated. Critically, CTC-induced effects, at whatever stage, are found to decay over about one week at room temperature after CTC, returning the properties to those of the as-cast glass. A model is proposed for CTC-induced effects, treating them as analogous to the accumulation of anelastic strain. The implications for analysis of existing data, and for future research on CTC effects, are highlighted.