Search Results

Now showing 1 - 8 of 8
  • Item
    Robust Single Molecule Magnet Monolayers on Graphene and Graphite with Magnetic Hysteresis up to 28 K
    (Weinheim : Wiley-VCH, 2021) Spree, Lukas; Liu, Fupin; Neu, Volker; Rosenkranz, Marco; Velkos, Georgios; Wang, Yaofeng; Schiemenz, Sandra; Dreiser, Jan; Gargiani, Pierluigi; Valvidares, Manuel; Chen, Chia-Hsiang; Büchner, Bernd; Avdoshenko, Stanislav M.; Popov, Alexey A.
    The chemical functionalization of fullerene single molecule magnet Tb2@C80(CH2Ph) enables the facile preparation of robust monolayers on graphene and highly oriented pyrolytic graphite from solution without impairing their magnetic properties. Monolayers of endohedral fullerene functionalized with pyrene exhibit magnetic bistability up to a temperature of 28 K. The use of pyrene terminated linker molecules opens the way to devise integration of spin carrying units encapsulated by fullerene cages on graphitic substrates, be it single-molecule magnets or qubit candidates. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Perovskite Origami for Programmable Microtube Lasing
    (Weinheim : Wiley-VCH, 2021) Dong, Haiyun; Saggau, Christian Niclaas; Zhu, Minshen; Liang, Jie; Duan, Shengkai; Wang, Xiaoyu; Tang, Hongmei; Yin, Yin; Wang, Xiaoxia; Wang, Jiawei; Zhang, Chunhuan; Zhao, Yong Sheng; Ma, Libo; Schmidt, Oliver G.
    Metal halide perovskites are promising materials for optoelectronic and photonic applications ranging from photovoltaics to laser devices. However, current perovskite devices are constrained to simple low-dimensional structures suffering from limited design freedom and holding up performance improvement and functionality upgrades. Here, a micro-origami technique is developed to program 3D perovskite microarchitectures toward a new type of microcavity laser. The design flexibility in 3D supports not only outstanding laser performance such as low threshold, tunable output, and high stability but also yields new functionalities like 3D confined mode lasing and directional emission in, for example, laser “array-in-array” systems. The results represent a significant step forward toward programmable microarchitectures that take perovskite optoelectronics and photonics into the 3D era. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.
  • Item
    Structural Aspects of P2-Type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) Stabilization by Lithium Defects as a Cathode Material for Sodium-Ion Batteries
    (Weinheim : Wiley-VCH, 2021) Yang, Liangtao; Kuo, Liang-Yin; López del Amo, Juan Miguel; Nayak, Prasant Kumar; Mazzio, Katherine A.; Maletti, Sebastian; Mikhailova, Daria; Giebeler, Lars; Kaghazchi, Payam; Rojo, Teófilo; Adelhelm, Philipp
    A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Revealing the Various Electrochemical Behaviors of Sn4P3 Binary Alloy Anodes in Alkali Metal Ion Batteries
    (Weinheim : Wiley-VCH, 2021) Zhou, Junhua; Lian, Xueyu; You, Yizhou; Shi, Qitao; Liu, Yu; Yang, Xiaoqin; Liu, Lijun; Wang, Dan; Choi, Jin-Ho; Sun, Jingyu; Yang, Ruizhi; Rummeli, Mark H.
    Sn4P3 binary alloy anode has attracted much attention, not only because of the synergistic effect of P and Sn, but also its universal popularity in alkali metal ion batteries (AIBs), including lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (PIBs). However, the alkali metal ion (A+) storage and capacity attenuation mechanism of Sn4P3 anodes in AIBs are not well understood. Herein, a combination of ex situ X-ray diffraction, transmission electron microscopy, and density functional theory calculations reveals that the Sn4P3 anode undergoes segregation of Sn and P, followed by the intercalation of A+ in P and then in Sn. In addition, differential electrochemical curves and ex situ XPS results demonstrate that the deep insertion of A+ in P and Sn, especially in P, contributes to the reduction in capacity of AIBs. Serious sodium metal dendrite growth causes further reduction in the capacity of SIBs, while in PIBs it is the unstable solid electrolyte interphase and sluggish dynamics that lead to capacity decay. Not only the failure mechanism, including structural deterioration, unstable SEI, dendrite growth, and sluggish kinetics, but also the modification strategy and systematic analysis method provide theoretical guidance for the development of other alloy-based anode materials. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    On the Catalytic Activity of Sn Monomers and Dimers at Graphene Edges and the Synchronized Edge Dependence of Diffusing Atoms in Sn Dimers
    (Weinheim : Wiley-VCH, 2021) Yang, Xiaoqin; Ta, Huy Q.; Hu, Huimin; Liu, Shuyuan; Liu, Yu; Bachmatiuk, Alicja; Luo, Jinping; Liu, Lijun; Choi, Jin-Ho; Rummeli, Mark H.
    In this study, in situ transmission electron microscopy is performed to study the interaction between single (monomer) and paired (dimer) Sn atoms at graphene edges. The results reveal that a single Sn atom can catalyze both the growth and etching of graphene by the addition and removal of C atoms respectively. Additionally, the frequencies of the energetically favorable configurations of an Sn atom at a graphene edge, calculated using density functional theory calculations, are compared with experimental observations and are found to be in good agreement. The remarkable dynamic processes of binary atoms (dimers) are also investigated and is the first such study to the best of the knowledge. Dimer diffusion along the graphene edges depends on the graphene edge termination. Atom pairs (dimers) involving an armchair configuration tend to diffuse with a synchronized shuffling (step-wise shift) action, while dimer diffusion at zigzag edge terminations show a strong propensity to collapse the dimer with each atom diffusing in opposite directions (monomer formation). Moreover, the data reveals the role of C feedstock availability on the choice a single Sn atom makes in terms of graphene growth or etching. This study advances the understanding single atom catalytic activity at graphene edges. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Phase Selection in Mn–Si Alloys by Fast Solid-State Reaction with Enhanced Skyrmion Stability
    (Weinheim : Wiley-VCH, 2021) Li, Zichao; Xie, Yufang; Yuan, Ye; Ji, Yanda; Begeza, Viktor; Cao, Lei; Hübner, René; Rebohle, Lars; Helm, Manfred; Nielsch, Kornelius; Prucnal, Slawomir; Zhou, Shengqiang
    B20-type transition-metal silicides or germanides are noncentrosymmetric materials hosting magnetic skyrmions, which are promising information carriers in spintronic devices. The prerequisite is to prepare thin films on technology-relevant substrates with magnetic skyrmions stabilized at a broad temperature and magnetic-field working window. A canonical example is the B20-MnSi film grown on Si substrates. However, the as-yet unavoidable contamination with MnSi1.7 occurs due to the lower nucleation temperature of this phase. In this work, a simple and efficient method to overcome this problem and prepare single-phase MnSi films on Si substrates is reported. It is based on the millisecond reaction between metallic Mn and Si using flash-lamp annealing (FLA). By controlling the FLA energy density, single-phase MnSi or MnSi1.7 or their mixture can be grown at will. Compared with bulk MnSi, the prepared MnSi films show an increased Curie temperature of up to 41 K. In particular, the magnetic skyrmions are stable over a much wider temperature and magnetic-field range than reported previously. The results constitute a novel phase selection approach for alloys and can help to enhance specific functional properties, such as the stability of magnetic skyrmions. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Glassy Metal–Organic-Framework-Based Quasi-Solid-State Electrolyte for High-Performance Lithium-Metal Batteries
    (Weinheim : Wiley-VCH, 2021) Jiang, Guangshen; Qu, Changzhen; Xu, Fei; Zhang, En; Lu, Qiongqiong; Cai, Xiaoru; Hausdorf, Steffen; Wang, Hongqiang; Kaskel, Stefan
    Enhancing ionic conductivity of quasi-solid-state electrolytes (QSSEs) is one of the top priorities, while conventional metal–organic frameworks (MOFs) severely impede ion migration due to their abundant grain boundaries. Herein, ZIF-4 glass, a subset of MOFs, is reported as QSSEs (LGZ) for lithium-metal batteries. With lean Li content (0.12 wt%) and solvent amount (19.4 wt%), LGZ can achieve a remarkable ion conductivity of 1.61 × 10−4 S cm−1 at 30 °C, higher than those of crystalline ZIF-4-based QSSEs (LCZ, 8.21 × 10−5 S cm−1) and the reported QSSEs containing high Li contents (0.32–5.4 wt%) and huge plasticizer (30–70 wt%). Even at −56.6 °C, LGZ can still deliver a conductivity of 5.96 × 10−6 S cm−1 (vs 4.51 × 10−7 S cm−1 for LCZ). Owing to the grain boundary-free and isotropic properties of glassy ZIF-4, the facilitated ion conduction enables a homogeneous ion flux, suppressing Li dendrites. When paired with LiFePO4 cathode, LGZ cell demonstrates a prominent cycling capacity of 101 mAh g−1 for 500 cycles at 1 C with the near-utility retention, outperforming LCZ (30.7 mAh g−1) and the explored MOF-/covalent–organic frameworks (COF)-based QSSEs. Hence, MOF glasses will be a potential platform for practical quasi-solid-state batteries in the future. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Analysis of the Annealing Budget of Metal Oxide Thin-Film Transistors Prepared by an Aqueous Blade-Coating Process
    (Weinheim : Wiley-VCH, 2022) Tang, Tianyu; Dacha, Preetam; Haase, Katherina; Kreß, Joshua; Hänisch, Christian; Perez, Jonathan; Krupskaya, Yulia; Tahn, Alexander; Pohl, Darius; Schneider, Sebastian; Talnack, Felix; Hambsch, Mike; Reineke, Sebastian; Vaynzof, Yana; Mannsfeld, Stefan C. B.
    Metal oxide (MO) semiconductors are widely used in electronic devices due to their high optical transmittance and promising electrical performance. This work describes the advancement toward an eco-friendly, streamlined method for preparing thin-film transistors (TFTs) via a pure water-solution blade-coating process with focus on a low thermal budget. Low temperature and rapid annealing of triple-coated indium oxide thin-film transistors (3C-TFTs) and indium oxide/zinc oxide/indium oxide thin-film transistors (IZI-TFTs) on a 300 nm SiO2 gate dielectric at 300 °C for only 60 s yields devices with an average field effect mobility of 10.7 and 13.8 cm2 V−1 s−1, respectively. The devices show an excellent on/off ratio (>106), and a threshold voltage close to 0 V when measured in air. Flexible MO-TFTs on polyimide substrates with AlOx dielectrics fabricated by rapid annealing treatment can achieve a remarkable mobility of over 10 cm2 V−1 s−1 at low operating voltage. When using a longer post-coating annealing period of 20 min, high-performance 3C-TFTs (over 18 cm2 V−1 s−1) and IZI-TFTs (over 38 cm2 V−1 s−1) using MO semiconductor layers annealed at 300 °C are achieved.