Search Results

Now showing 1 - 2 of 2
  • Item
    High‐Entropy Sulfides as Electrode Materials for Li‐Ion Batteries
    (Weinheim : Wiley-VCH, 2022) Lin, Ling; Wang, Kai; Sarkar, Abhishek; Njel, Christian; Karkera, Guruprakash; Wang, Qingsong; Azmi, Raheleh; Fichtner, Maximilian; Hahn, Horst; Schweidler, Simon; Breitung, Ben
    High-entropy sulfides (HESs) containing 5 equiatomic transition metals (M), with different M:S ratios, are prepared by a facile one-step mechanochemical approach. Two new types of single-phase HESs with pyrite (Pa-3) and orthorhombic (Pnma) structures are obtained and demonstrate a homogeneously mixed solid solution. The straightforward synthesis method can easily tune the desired metal to sulfur ratio for HESs with different stoichiometries, by utilizing the respective metal sulfides, even pure metals, and sulfur as precursor chemicals. The structural details and solid solution nature of HESs are studied by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma optical emission spectroscopy, and Mössbauer spectroscopy. Since transition metal sulfides are a very versatile material class, here the application of HESs is presented as electrode materials for reversible electrochemical energy storage, in which the HESs show high specific capacities and excellent rate capabilities in secondary Li-ion batteries.
  • Item
    Interdot Lead Halide Excess Management in PbS Quantum Dot Solar Cells
    (Weinheim : Wiley-VCH, 2022) Albaladejo‐Siguan, Miguel; Becker‐Koch, David; Baird, Elizabeth C.; Hofstetter, Yvonne J.; Carwithen, Ben P.; Kirch, Anton; Reineke, Sebastian; Bakulin, Artem A.; Paulus, Fabian; Vaynzof, Yana
    Light-harvesting devices made from lead sulfide quantum dot (QD) absorbers are one of the many promising technologies of third-generation photovoltaics. Their simple, solution-based fabrication, together with a highly tunable and broad light absorption makes their application in newly developed solar cells, particularly promising. In order to yield devices with reduced voltage and current losses, PbS QDs need to have strategically passivated surfaces, most commonly achieved through lead iodide and bromide passivation. The interdot spacing is then predominantly filled with residual amorphous lead halide species that remain from the ligand exchange, thus hindering efficient charge transport and reducing device stability. Herein, it is demonstrated that a post-treatment by iodide-based 2-phenylethlyammonium salts and intermediate 2D perovskite formation can be used to manage the lead halide excess in the PbS QD active layer. This treatment results in improved device performance and increased shelf-life stability, demonstrating the importance of interdot spacing management in PbS QD photovoltaics.