Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Impacts of meeting minimum access on critical earth systems amidst the Great Inequality

2022, Rammelt, Crelis F., Gupta, Joyeeta, Liverman, Diana, Scholtens, Joeri, Ciobanu, Daniel, Abrams, Jesse F., Bai, Xuemei, Gifford, Lauren, Gordon, Christopher, Hurlbert, Margot, Inoue, Cristina Y. A., Jacobson, Lisa, Lade, Steven J., Lenton, Timothy M., McKay, David I. Armstrong, Nakicenovic, Nebojsa, Okereke, Chukwumerije, Otto, Ilona M., Pereira, Laura M., Prodani, Klaudia, Rockström, Johan, Stewart-Koster, Ben, Verburg, Peter H., Zimm, Caroline

The Sustainable Development Goals aim to improve access to resources and services, reduce environmental degradation, eradicate poverty and reduce inequality. However, the magnitude of the environmental burden that would arise from meeting the needs of the poorest is under debate—especially when compared to much larger burdens from the rich. We show that the ‘Great Acceleration’ of human impacts was characterized by a ‘Great Inequality’ in using and damaging the environment. We then operationalize ‘just access’ to minimum energy, water, food and infrastructure. We show that achieving just access in 2018, with existing inequalities, technologies and behaviours, would have produced 2–26% additional impacts on the Earth’s natural systems of climate, water, land and nutrients—thus further crossing planetary boundaries. These hypothetical impacts, caused by about a third of humanity, equalled those caused by the wealthiest 1–4%. Technological and behavioural changes thus far, while important, did not deliver just access within a stable Earth system. Achieving these goals therefore calls for a radical redistribution of resources.

Loading...
Thumbnail Image
Item

The Latin America Early Career Earth System Scientist Network (LAECESS): addressing present and future challenges of the upcoming generations of scientists in the region

2022, Yáñez-Serrano, Ana María, Aguilos, Maricar, Barbosa, Cybelli, Bolaño-Ortiz, Tomás Rafael, Carbone, Samara, Díaz-López, Stephanie, Diez, Sebastián, Dominutti, Pamela, Engelhardt, Vanessa, Gomes Alves, Eliane, Pedraza, Jenniffer, Saturno, Jorge, Tzompa-Sosa, Zitely A.

Early career (EC) Earth system scientists in the Latin America and the Caribbean region (LAC) have been facing several issues, such as limited funding opportunities, substandard scientific facilities, lack of security of tenure, and unrepresented groups equality issues. On top of this, the worsening regional environmental and climatic crises call for the need for this new generation of scientists to help to tackle these crises by increasing public awareness and research. Realizing the need to converge and step up in making a collective action to be a part of the solution, the Latin America Early Career Earth System Scientist Network (LAECESS) was created in 2016. LAECESS’s primary goals are to promote regional networking, foster integrated and interdisciplinary science, organize soft skills courses and workshops, and empower Latin American EC researchers. This article is an initial step towards letting the global science community grasp the current situation and hear the early career LAC science community’s perspectives. The paper also presents a series of future steps needed for better scientific and social development in the LAC region.

Loading...
Thumbnail Image
Item

Nucleation of jet engine oil vapours is a large source of aviation-related ultrafine particles

2022, Ungeheuer, Florian, Caudillo, Lucía, Ditas, Florian, Simon, Mario, van Pinxteren, Dominik, Kılıç, Doğuşhan, Rose, Diana, Jacobi, Stefan, Kürten, Andreas, Curtius, Joachim, Vogel, Alexander L.

Large airports are a major source of ultrafine particles, which spread across densely populated residential areas, affecting air quality and human health. Jet engine lubrication oils are detectable in aviation-related ultrafine particles, however, their role in particle formation and growth remains unclear. Here we show the volatility and new-particle-formation ability of a common synthetic jet oil, and the quantified oil fraction in ambient ultrafine particles downwind of Frankfurt International Airport, Germany. We find that the oil mass fraction is largest in the smallest particles (10-18 nm) with 21% on average. Combining ambient particle-phase concentration and volatility of the jet oil compounds, we determine a lower-limit saturation ratio larger than 1 × 105 for ultra-low volatility organic compounds. This indicates that the oil is an efficient nucleation agent. Our results demonstrate that jet oil nucleation is an important mechanism that can explain the abundant observations of high number concentrations of non-refractory ultrafine particles near airports.

Loading...
Thumbnail Image
Item

Global perturbation of stratospheric water and aerosol burden by Hunga eruption

2022, Khaykin, Sergey, Podglajen, Aurelien, Ploeger, Felix, Grooß, Jens-Uwe, Tence, Florent, Bekki, Slimane, Khlopenkov, Konstantin, Bedka, Kristopher, Rieger, Landon, Baron, Alexandre, Godin-Beekmann, Sophie, Legras, Bernard, Sellitto, Pasquale, Sakai, Tetsu, Barnes, John, Uchino, Osamu, Morino, Isamu, Nagai, Tomohiro, Wing, Robin, Baumgarten, Gerd, Gerding, Michael, Duflot, Valentin, Payen, Guillaume, Jumelet, Julien, Querel, Richard, Liley, Ben, Bourassa, Adam, Clouser, Benjamin, Feofilov, Artem, Hauchecorne, Alain, Ravetta, François

The eruption of the submarine Hunga volcano in January 2022 was associated with a powerful blast that injected volcanic material to altitudes up to 58 km. From a combination of various types of satellite and ground-based observations supported by transport modeling, we show evidence for an unprecedented increase in the global stratospheric water mass by 13% relative to climatological levels, and a 5-fold increase of stratospheric aerosol load, the highest in the last three decades. Owing to the extreme injection altitude, the volcanic plume circumnavigated the Earth in only 1 week and dispersed nearly pole-to-pole in three months. The unique nature and magnitude of the global stratospheric perturbation by the Hunga eruption ranks it among the most remarkable climatic events in the modern observation era, with a range of potential long-lasting repercussions for stratospheric composition and climate.