Search Results

Now showing 1 - 6 of 6
  • Item
    Charge‐Compensated N‐Doped π ‐Conjugated Polymers: Toward both Thermodynamic Stability of N‐Doped States in Water and High Electron Conductivity
    (Weinheim : Wiley-VCH, 2022) Borrmann, Fabian; Tsuda, Takuya; Guskova, Olga; Kiriy, Nataliya; Hoffmann, Cedric; Neusser, David; Ludwigs, Sabine; Lappan, Uwe; Simon, Frank; Geisler, Martin; Debnath, Bipasha; Krupskaya, Yulia; Al‐Hussein, Mahmoud; Kiriy, Anton
    The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective “in-water” applications is developed. A combined experimental–theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10−2 S cm−1 under ambient conditions and 10−1 S cm−1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced “collapse” of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.
  • Item
    Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves
    ([London] : Nature Publishing Group UK, 2022) Zanotto, Simone; Biasiol, Giorgio; Santos, Paulo V.; Pitanti, Alessandro
    Wave refraction at an interface between different materials is a basic yet fundamental phenomenon, transversal to several scientific realms – electromagnetism, gas and fluid acoustics, solid mechanics, and possibly also matter waves. Under specific circumstances, mostly enabled by structuration below the wavelength scale, i.e., through the metamaterial approach, waves undergo negative refraction, eventually enabling superlensing and transformation optics. However, presently known negative refraction systems are symmetric, in that they cannot distinguish between positive and negative angles of incidence. Exploiting a metamaterial with an asymmetric unit cell, we demonstrate that the aforementioned symmetry can be broken, ultimately relying on the specific shape of the Bloch mode isofrequency curves. Our study specialized upon a mechanical metamaterial operating at GHz frequency, which is by itself a building block for advanced technologies such as chip-scale hybrid optomechanical and electromechanical devices. However, the phenomenon is based on general wave theory concepts, and it applies to any frequency and time scale for any kind of linear waves, provided that a suitable shaping of the isofrequency contours is implemented.
  • Item
    Optoelectronic properties and ultrafast carrier dynamics of copper iodide thin films
    ([London] : Nature Publishing Group UK, 2022) Li, Zhan Hua; He, Jia Xing; Lv, Xiao Hu; Chi, Ling Fei; Egbo, Kingsley O.; Li, Ming-De; Tanaka, Tooru; Guo, Qi Xin; Yu, Kin Man; Liu, Chao Ping
    As a promising high mobility p-type wide bandgap semiconductor, copper iodide has received increasing attention in recent years. However, the defect physics/evolution are still controversial, and particularly the ultrafast carrier and exciton dynamics in copper iodide has rarely been investigated. Here, we study these fundamental properties for copper iodide thin films by a synergistic approach employing a combination of analytical techniques. Steady-state photoluminescence spectra reveal that the emission at ~420 nm arises from the recombination of electrons with neutral copper vacancies. The photogenerated carrier density dependent ultrafast physical processes are elucidated with using the femtosecond transient absorption spectroscopy. Both the effects of hot-phonon bottleneck and the Auger heating significantly slow down the cooling rate of hot-carriers in the case of high excitation density. The effect of defects on the carrier recombination and the two-photon induced ultrafast carrier dynamics are also investigated. These findings are crucial to the optoelectronic applications of copper iodide.
  • Item
    On-chip generation and dynamic piezo-optomechanical rotation of single photons
    ([London] : Nature Publishing Group UK, 2022) Bühler, Dominik D.; Weiß, Matthias; Crespo-Poveda, Antonio; Nysten, Emeline D. S.; Finley, Jonathan J.; Müller, Kai; Santos, Paulo V.; de Lima Jr., Mauricio M.; Krenner, Hubert J.
    Integrated photonic circuits are key components for photonic quantum technologies and for the implementation of chip-based quantum devices. Future applications demand flexible architectures to overcome common limitations of many current devices, for instance the lack of tuneabilty or built-in quantum light sources. Here, we report on a dynamically reconfigurable integrated photonic circuit comprising integrated quantum dots (QDs), a Mach-Zehnder interferometer (MZI) and surface acoustic wave (SAW) transducers directly fabricated on a monolithic semiconductor platform. We demonstrate on-chip single photon generation by the QD and its sub-nanosecond dynamic on-chip control. Two independently applied SAWs piezo-optomechanically rotate the single photon in the MZI or spectrally modulate the QD emission wavelength. In the MZI, SAWs imprint a time-dependent optical phase and modulate the qubit rotation to the output superposition state. This enables dynamic single photon routing with frequencies exceeding one gigahertz. Finally, the combination of the dynamic single photon control and spectral tuning of the QD realizes wavelength multiplexing of the input photon state and demultiplexing it at the output. Our approach is scalable to multi-component integrated quantum photonic circuits and is compatible with hybrid photonic architectures and other key components for instance photonic resonators or on-chip detectors.
  • Item
    Single “Swiss-roll” microelectrode elucidates the critical role of iron substitution in conversion-type oxides
    (Washington, DC [u.a.] : Assoc., 2022) Liu, Lixiang; Huang, Shaozhuan; Shi, Wujun; Sun, Xiaolei; Pang, Jinbo; Lu, Qiongqiong; Yang, Ye; Xi, Lixia; Deng, Liang; Oswald, Steffen; Yin, Yin; Liu, Lifeng; Ma, Libo; Schmidt, Oliver G.; Shi, Yumeng; Zhang, Lin
    Advancing the lithium-ion battery technology requires the understanding of electrochemical processes in electrode materials with high resolution, accuracy, and sensitivity. However, most techniques today are limited by their inability to separate the complex signals from slurry-coated composite electrodes. Here, we use a three-dimensional “Swiss-roll” microtubular electrode that is incorporated into a micrometer-sized lithium battery. This on-chip platform combines various in situ characterization techniques and precisely probes the intrinsic electrochemical properties of each active material due to the removal of unnecessary binders and additives. As an example, it helps elucidate the critical role of Fe substitution in a conversion-type NiO electrode by monitoring the evolution of Fe2O3 and solid electrolyte interphase layer. The markedly enhanced electrode performances are therefore explained. Our approach exposes a hitherto unexplored route to tracking the phase, morphology, and electrochemical evolution of electrodes in real time, allowing us to reveal information that is not accessible with bulk-level characterization techniques.
  • Item
    Topological transitions in ac/dc-driven superconductor nanotubes
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Fomin, Vladimir M.; Rezaev, Roman O.; Dobrovolskiy, Oleksandr V.
    Extending of nanostructures into the third dimension has become a major research avenue in condensed-matter physics, because of geometry- and topology-induced phenomena. In this regard, superconductor 3D nanoarchitectures feature magnetic field inhomogeneity, non-trivial topology of Meissner currents and complex dynamics of topological defects. Here, we investigate theoretically topological transitions in the dynamics of vortices and slips of the phase of the order parameter in open superconductor nanotubes under a modulated transport current. Relying upon the time-dependent Ginzburg–Landau equation, we reveal two distinct voltage regimes when (i) a dominant part of the tube is in either the normal or superconducting state and (ii) a complex interplay between vortices, phase-slip regions and screening currents determines a rich FFT voltage spectrum. Our findings unveil novel dynamical states in superconductor open nanotubes, such as paraxial and azimuthal phase-slip regions, their branching and coexistence with vortices, and allow for control of these states by superimposed dc and ac current stimuli.