Search Results

Now showing 1 - 3 of 3
  • Item
    Biomass Alginate Derived Oxygen-Enriched Carbonaceous Materials with Partially Graphitic Nanolayers for High Performance Anodes in Lithium-Ion Batteries
    (Basel : MDPI, 2022) Sun, Xiaolei; Chen, Yao; Li, Yang; Luo, Feng
    Lithium-ion batteries with high reversible capacity, high-rate capability, and extended cycle life are vital for future consumer electronics and renewable energy storage. There is a great deal of interest in developing novel types of carbonaceous materials to boost lithium storage properties due to the inadequate properties of conventional graphite anodes. In this study, we describe a facile and low-cost approach for the synthesis of oxygen-doped hierarchically porous carbons with partially graphitic nanolayers (Alg-C) from pyrolyzed Na-alginate biopolymers without resorting to any kind of activation step. The obtained Alg-C samples were analyzed using various techniques, such as X-ray diffraction, Raman, X-ray photoelectron spectroscopy, scanning electron microscope, and transmission electron microscope, to determine their structure and morphology. When serving as lithium storage anodes, the as-prepared Alg-C electrodes have outstanding electrochemical features, such as a high-rate capability (120 mAh g−1 at 3000 mA g−1) and extended cycling lifetimes over 5000 cycles. The post-cycle morphologies ultimately provide evidence of the distinct structural characteristics of the Alg-C electrodes. These preliminary findings suggest that alginate-derived carbonaceous materials may have intensive potential for next-generation energy storage and other related applications.
  • Item
    A Bi2Te3-Filled Nickel Foam Film with Exceptional Flexibility and Thermoelectric Performance
    (Basel : MDPI, 2022) Shi, Taifeng; Chen, Mengran; Liu, Zhenguo; Song, Qingfeng; Ou, Yixiang; Wang, Haoqi; Liang, Jia; Zhang, Qihao; Mao, Zhendong; Wang, Zhiwen; Zheng, Jingyvan; Han, Qingchen; Razeeb, Kafil M.; Zong, Peng-an
    The past decades have witnessed surging demand for wearable electronics, for which thermoelectrics (TEs) are considered a promising self-charging technology, as they are capable of converting skin heat into electricity directly. Bi2Te3 is the most-used TE material at room temperature, due to a high zT of ~1. However, it is different to integrate Bi2Te3 for wearable TEs owing to its intrinsic rigidity. Bi2Te3 could be flexible when made thin enough, but this implies a small electrical and thermal load, thus severely restricting the power output. Herein, we developed a Bi2Te3/nickel foam (NiFoam) composite film through solvothermal deposition of Bi2Te3 nanoplates into porous NiFoam. Due to the mesh structure and ductility of Ni Foam, the film, with a thickness of 160 μm, exhibited a high figure of merit for flexibility, 0.016, connoting higher output. Moreover, the film also revealed a high tensile strength of 12.7 ± 0.04 MPa and a maximum elongation rate of 28.8%. In addition, due to the film’s high electrical conductivity and enhanced Seebeck coefficient, an outstanding power factor of 850 μW m−1 K−2 was achieved, which is among the highest ever reported. A module fabricated with five such n-type legs integrated electrically in series and thermally in parallel showed an output power of 22.8 nW at a temperature gap of 30 K. This work offered a cost-effective avenue for making highly flexible TE films for power supply of wearable electronics by intercalating TE nanoplates into porous and meshed-structure materials.
  • Item
    Core–Shell GaAs-Fe Nanowire Arrays: Fabrication Using Electrochemical Etching and Deposition and Study of Their Magnetic Properties
    (Basel : MDPI, 2022) Monaico, Eduard V.; Morari, Vadim; Ursaki, Veaceslav V.; Nielsch, Kornelius; Tiginyanu, Ion M.
    The preparation of GaAs nanowire templates with the cost-effective electrochemical etching of (001) and (111)B GaAs substrates in a 1 M HNO3 electrolyte is reported. The electrochemical etching resulted in the obtaining of GaAs nanowires with both perpendicular and parallel orientations with respect to the wafer surface. Core–shell GaAs-Fe nanowire arrays have been prepared by galvanostatic Fe deposition into these templates. The fabricated arrays have been investigated by means of scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). The magnetic properties of the polycrystalline Fe nanotubes constituting the shells of the cylindrical structures, such as the saturation and remanence moment, squareness ratio, and coercivity, were analyzed in relation to previously reported data on ferromagnetic nanowires and nanotubes.