Search Results

Now showing 1 - 10 of 53
  • Item
    The Gaia-ESO Survey: Probing the lithium abundances in old metal-rich dwarf stars in the solar vicinity
    (Les Ulis : EDP Sciences, 2022) Dantas, M.L.L.; Guiglion, G.; Smiljanic, R.; Romano, D.; Magrini, L.; Bensby, T.; Chiappini, C.; Franciosini, E.; Nepal, S.; Tautvaišienė, G.; Gilmore, G.; Randich, S.; Lanzafame, A.C.; Heiter, U.; Morbidelli, L.; Prisinzano, L.; Zaggia, S.
    Context. Lithium (Li) is a fragile element that is produced in a variety of sites but can also be very easily depleted in stellar photospheres. Radial migration has been reported to explain the decrease in the upper envelope of Li measurements observed for relatively old metal-rich dwarf stars in some surveys. Aims. We test a scenario in which radial migration could affect the Li abundance pattern of dwarf stars in the solar neighbourhood. This may confirm that the Li abundances in these stars cannot serve as a probe for the Li abundance in the interstellar medium (ISM). In other words, to probe the evolution of the Li abundance in the local ISM, it is crucial that stellar intruders be identified and removed from the adopted sample. Methods. We used the high-quality data (including Li abundances) from the sixth internal Data Release of the Gaia-ESO survey. In this sample we grouped stars by similarity in chemical abundances via hierarchical clustering. Our analysis treats both measured Li abundances and upper limits. Results. The Li envelope of the previously identified radially migrated stars is well below the benchmark meteoritic value (<3.26 dex); the star with the highest detected abundance has A(Li) = 2.76 dex. This confirms the previous trends observed for old dwarf stars (median ages ~ 8 Gyr), where Li decreases for [Fe/H] ≳ 0. Conclusions. This result is supporting evidence that the abundance of Li measured in the upper envelope of old dwarf stars should not be considered a proxy for the ISM Li. Our scenario also indicates that the stellar yields for [M/H] >0 should not be decreased, as recently proposed in the literature. Our study backs recent studies that claim that old dwarfs on the hot side of the dip are efficient probes of the ISM abundance of Li, provided atomic diffusion does not significantly lower the initial Li abundance in the atmospheres of metal-rich objects.
  • Item
    MUSE crowded field 3D spectroscopy in NGC 300: III. Characterizing extremely faint HII regions and diffuse ionized gas
    (Les Ulis : EDP Sciences, 2022) Micheva, Genoveva; Roth, Martin M.; Weilbacher, Peter M.; Morisset, Christophe; Castro, Norberto; Monreal Ibero, Ana; Soemitro, Azlizan A.; Maseda, Michael V.; Steinmetz, Matthias; Brinchmann, Jarle
    Context. There are known differences between the physical properties of H II and diffuse ionized gas (DIG). However, most of the studied regions in the literature are relatively bright, with log10 L(Hα)[erg s-1] ≳37. Aims. We compiled an extremely faint sample of 390 H II regions with a median Hα luminosity of 34.7 in the flocculent spiral galaxy NGC 300, derived their physical properties in terms of metallicity, density, extinction, and kinematics, and performed a comparative analysis of the properties of the DIG. Methods. We used MUSE data of nine fields in NGC 300, covering a galactocentric distance of zero to ~450 arcsec (~4 projected kpc), including spiral arm and inter-arm regions. We binned the data in dendrogram leaves and extracted all strong nebular emission lines. We identified H II and DIG regions and compared their electron densities, metallicity, extinction, and kinematic properties. We also tested the effectiveness of unsupervised machine-learning algorithms in distinguishing between the H II and DIG regions. Results. The gas density in the H II and DIG regions is close to the low-density limit in all fields. The average velocity dispersion in the DIG is higher than in the H II regions, which can be explained by the DIG being 1.8 kK hotter than H II gas. The DIG manifests a lower ionization parameter than H II gas, and the DIG fractions vary between 15-77%, with strong evidence of a contribution by hot low-mass evolved stars and shocks to the DIG ionization. Most of the DIG is consistent with no extinction and an oxygen metallicity that is indistinguishable from that of the H II gas. We observe a flat metallicity profile in the central region of NGC 300, without a sign of a gradient. Conclusions. The differences between extremely faint H II and DIG regions follow the same trends and correlations as their much brighter cousins. Both types of objects are so heterogeneous, however, that the differences within each class are larger than the differences between the two classes.
  • Item
    Surface brightness-colour relations of dwarf stars from detached eclipsing binaries: I. Calibrating sample
    (Les Ulis : EDP Sciences, 2022) Graczyk, D.; Pietrzyński, G.; Galan, C.; Southworth, J.; Gieren, W.; Kałuszyński, M.; Zgirski, B.; Gallenne, A.; Górski, M.; Hajdu, G.; Karczmarek, P.; Kervella, P.; Maxted, P. F. L.; Nardetto, N.; Narloch, W.; Pilecki, B.; Pych, W.; Rojas Garcia, G.; Storm, J.; Suchomska, K.; Taormina, M.; Wielgórski, P.
    Aims. Surface brightness - colour relations (SBCRs) are very useful tools for predicting the angular diameters of stars. They offer the possibility to calculate very precise spectrophotometric distances by the eclipsing binary method or the Baade-Wesselink method. Double-lined Detached Eclipsing Binary stars (SB2 DEBs) with precisely known trigonometric parallaxes allow for a calibration of SBCRs with unprecedented precision. In order to improve such calibrations, it is important to enlarge the calibration sample of suitable eclipsing binaries with very precisely determined physical parameters. Methods. We carefully chose a sample of ten SB2 DEBs in the solar neighbourhood which contain inactive main-sequence components. The components have spectral types from early A to early K. All systems have high-precision parallaxes from the Gaia mission. We analysed high precision ground- and space-based photometry simultaneously with the radial velocity curves derived from HARPS spectra. We used spectral disentangling to obtain the individual spectra of the components and used these to derive precise atmospheric parameters and chemical abundances. For almost all components, we derived precise surface temperatures and metallicities. Results. We derived absolute dimensions for 20 stars with an average precision of 0.2% and 0.5% for masses and radii, respectively. Three systems show slow apsidal motion. One system, HD 32129, is most likely a triple system with a much fainter K6V companion. Also three systems contain metallic-line components and show strong enhancements of barium and ittrium. Conclusions. The components of all systems compare well to the SBCR derived before from the detached eclipsing binary stars. With a possible exception of HD 32129, they can be used to calibrate SBCRs with a precision better than 1% with available Gaia DR3 parallaxes.
  • Item
    Absolute dimensions and apsidal motion of the eclipsing binaries V889 Aquilae and V402 Lacertae
    (Les Ulis : EDP Sciences, 2022) Baroch, D.; Giménez, A.; Morales, J. C.; Ribas, I.; Herrero, E.; Perdelwitz, V.; Jordi, C.; Granzer, T.; Allende Prieto, C.
    Context. Double-lined eclipsing binaries allow the direct determination of masses and radii, which are key for testing stellar models. With the launch of the TESS mission, many well-known eclipsing binaries have been observed at higher photometric precision, permitting the improvement of the absolute dimension determinations. Aims. Using TESS data and newly obtained spectroscopic observations, we aim to determine the masses and radii of the eccentric eclipsing binary systems V889 Aql and V402 Lac, together with their apsidal motion parameters. Methods. We simultaneously modelled radial velocity curves and times of eclipse for each target to precisely determine the orbital parameters of the systems, which we used to analyse the light curves and then obtain their absolute dimensions. We compared the obtained values with those predicted by theoretical models. Results. We determined masses and radii of the components of both systems with relative uncertainties lower than 2%. V889 Aql is composed of two stars with masses 2:17±0:02 M⊙ and 2:13±0:01 M⊙ and radii 1:87±0:04 R⊙ and 1:85±0:04 R⊙.We find conclusive evidence of the presence of a third body orbiting V889 Aql with a period of 67 yr. Based on the detected third light and the absence of signal in the spectra, we suggest that this third body could in turn be a binary composed of two ±1.4 M⊙ stars. V402 Lac is composed of two stars with masses 2:80 ± 0:05 M⊙ and 2:78 ± 0:05 M⊙ and radii 2:38 ± 0:03 R⊙ and 2:36 ± 0:03 R⊙. The times of minimum light are compatible with the presence of a third body for this system too, although its period is not yet fully sampled. In both cases we have found a good agreement between the observed apsidal motion rates and the model predictions.
  • Item
    The SEDIGISM survey: The influence of spiral arms on the molecular gas distribution of the inner Milky Way
    (Les Ulis : EDP Sciences, 2022) Colombo, D.; Duarte-Cabral, A.; Pettitt, A.R.; Urquhart, J. S.; Wyrowski, F.; Csengeri, T.; Neralwar, K.R.; Schuller, F.; Menten, K.M.; Anderson, L.; Barnes, P.; Beuther, H.; Bronfman, L.; Eden, D.; Ginsburg, A.; Henning, T.; König, C.; Lee, M.-Y.; Mattern, M.; Medina, S.; Ragan, S.E.; Rigby, A. J.; Sánchez-Monge, Á.; Traficante, A.; Yang, A. Y.; Wienen, M.
    The morphology of the Milky Way is still a matter of debate. In order to shed light on uncertainties surrounding the structure of the Galaxy, in this paper, we study the imprint of spiral arms on the distribution and properties of its molecular gas. To do so, we take full advantage of the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic Interstellar Medium) survey that observed a large area of the inner Galaxy in the 13CO (2-1) line at an angular resolution of 28′′. We analyse the influences of the spiral arms by considering the features of the molecular gas emission as a whole across the longitude-velocity map built from the full survey. Additionally, we examine the properties of the molecular clouds in the spiral arms compared to the properties of their counterparts in the inter-arm regions. Through flux and luminosity probability distribution functions, we find that the molecular gas emission associated with the spiral arms does not differ significantly from the emission between the arms. On average, spiral arms show masses per unit length of ~105-106 M⊙ kpc-1. This is similar to values inferred from data sets in which emission distributions were segmented into molecular clouds. By examining the cloud distribution across the Galactic plane, we infer that the molecular mass in the spiral arms is a factor of 1.5 higher than that of the inter-arm medium, similar to what is found for other spiral galaxies in the local Universe. We observe that only the distributions of cloud mass surface densities and aspect ratio in the spiral arms show significant differences compared to those of the inter-arm medium; other observed differences appear instead to be driven by a distance bias. By comparing our results with simulations and observations of nearby galaxies, we conclude that the measured quantities would classify the Milky Way as a flocculent spiral galaxy, rather than as a grand-design one.
  • Item
    Warm ionized gas in the blue compact galaxy Haro 14 viewed by MUSE
    (Les Ulis : EDP Sciences, 2022) Cairós, L. M.; González-Pérez, J.N.; Weilbacher, P.M.; Manso Sainz, R.
    We investigate the warm ionized gas in the blue compact galaxy (BCG) Haro 14 by means of integral field spectroscopic observations taken with the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope. The large field of view of MUSE and its unprecedented sensitivity enable observations of the galaxy nebular emission up to large galactocentric distances, even in the important but very faint [O i] λ6300 diagnostic line. This allowed us to trace the ionized gas morphology and ionization structure of Haro 14 up to kiloparsec scales and, for the first time, to accurately investigate the excitation mechanism operating in the outskirts of a typical BCG. The intensity and diagnostic maps reveal at least two highly distinct components of ionized gas: the bright central regions, mostly made of individual clumps, and a faint component which extends up to kiloparsec scales and consists of widespread diffuse emission, well-delineated filamentary structures, and faint knots. Noteworthy are the two curvilinear filaments extending up to 2 and 2.3 kpc southwest, which likely trace the edges of supergiant expanding bubbles driven by galactic outflows. We find that while the central clumps in Haro 14 are Hii-region complexes, the morphology and line ratios of the whole low-surface-brightness component are not compatible with star formation photoionization. In the spatially resolved emission-line-ratio diagnostic diagrams, spaxels above the maximum starburst line form the majority (∼75% and ∼50% in the diagnostic diagrams involving [O i] and [S ii] respectively). Moreover, our findings suggest that more than one alternative mechanism is ionizing the outer galaxy regions. The properties of the diffiuse component are consistent with ionization by diluted radiation and the large filaments and shells are most probably shocked areas at the edge of bubbles. The mechanism responsible for the ionization of the faint individual clumps observed in the galaxy periphery is more difficult to assess. These clumps could be the shocked debris of fragmented shells or regions where star formation is proceeding under extreme conditions.
  • Item
    Gaia Early Data Release 3: The celestial reference frame (Gaia-CRF3)
    (Les Ulis : EDP Sciences, 2022) Klioner, S.A.; Lindegren, L.; Mignard, F.; Hernández, J.; Ramos-Lerate, M.; Bastian, U.; Biermann, M.; Bombrun, A.; De Torres, A.; Gerlach, E.; Geyer, R.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J.-L.; Hambly, N.C.; Harrison, D.L.; Hestroffer, D.; Hodgkin, S.T.; Hilger, T.; Holl, B.; Janben, K.; Jevardat De Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A.C.; Löffler, W.; Marchal, O.; Marrese, P.M.; Moitinho, A.; Hobbs, D.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Lammers, U.L.; Sarro, L.M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; Van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; McMillan, P.J.; Aguado, J.J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M.A.; Alves, J.; Anderson, R.I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Steidelmüller, H.; Baker, S.G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M.A.; Bassilana, J.-L.; Bauchet, N.; Teyssier, D.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bossini, D.; Bouquillon, S.; Raiteri, C.M.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A.G.; Buzzi, R.; Bartolomé, S.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M.I.; Carrasco, J.M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Bernet, M.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W.J.; Cornez, T.; Castañeda, J.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; De Laverny, P.; De Luise, F.; Clotet, M.; De March, R.; De Ridder, J.; De Souza, R.; Del Peloso, E.F.; Del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J.-B.; Demouchy, C.; Dharmawardena, T.E.; Davidson, M.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fabricius, C.; Fienga, A.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Garralda Torres, N.; Gavel, A.; Gavras, P.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J.J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L.P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Portell, J.; Sarmiento, M.H.; Hidalgo, S.L.; Hładczuk, N.; Holland, G.; Huckle, H.E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, O.; Juaristi Campillo, J.; Rowell, N.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kordopatis, G.; Korn, A.J.; Kóspál, A.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Torra, F.; Laizeau, P.; Lambert, S.; Lanza, A.F.; Lasne, Y.; Le Campion, J.-F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Torra, J.; Liao, S.; Licata, E.L.; Lindstrøm, H.E.P.; Lister, T.A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Brown, A.G.A.; Managau, S.; Mann, R.G.; Manteiga, M.; Marchant, J.M.; Marconi, M.; Marcos, J.; Santos, M. M. S. Marcos; Marín Pina, D.; Marinoni, S.; Marocco, F.; Vallenari, A.; Marshall, D.J.; Polo, L. Martin; Martín-Fleitas, J.M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Prusti, T.; Michalik, D.; Millar, N.R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; De Bruijne, J.H.J.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C.P.; Musella, I.; Nagy, Z.; Noval, L.; Arenou, F.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J.O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P.A.; Pallas-Quintela, L.; Panahi, A.; Babusiaux, C.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A.M.; Pineau, F.-X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Creevey, O.L.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Rambaux, N.; Ramos, P.; Re Fiorentin, P.; Regibo, S.; Richards, P.J.; Diaz, C. Rios; Ducourant, C.; Ripepi, V.; Riva, A.; Rix, H.-W.; Rixon, G.; Robichon, N.; Robin, A.C.; Robin, C.; Roelens, M.; Rogues, H.R.O.; Rohrbasser, L.; Evans, D.W.; Romero-Gómez, M.; Royer, F.; Ruz Mieres, D.; Rybicki, K.A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Eyer, L.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J.C.; Ségransan, D.; Semeux, D.; Guerra, R.; Shahaf, S.; Siddiqui, H.I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R.L.; Snaith, O.N.; Solano, E.; Hutton, A.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I.A.; Stephenson, C.A.; Süveges, M.; Surdej, J.; Jordi, C.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M.B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A.T.; Luri, X.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M.V.; Van Dillen, E.; Van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Panem, C.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N.A.; Bailer-Jones, C.A.L.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M.G.; Van Leeuwen, F.; Bakker, J.; Cacciari, C.; De Angeli, F.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G.M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; De Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.
    Context. Gaia-CRF3 is the celestial reference frame for positions and proper motions in the third release of data from the Gaia mission, Gaia DR3 (and for the early third release, Gaia EDR3, which contains identical astrometric results). The reference frame is defined by the positions and proper motions at epoch 2016.0 for a specific set of extragalactic sources in the (E)DR3 catalogue. Aims. We describe the construction of Gaia-CRF3 and its properties in terms of the distributions in magnitude, colour, and astrometric quality. Methods. Compact extragalactic sources in Gaia DR3 were identified by positional cross-matching with 17 external catalogues of quasi-stellar objects (QSO) and active galactic nuclei (AGN), followed by astrometric filtering designed to remove stellar contaminants. Selecting a clean sample was favoured over including a higher number of extragalactic sources. For the final sample, the random and systematic errors in the proper motions are analysed, as well as the radio-optical offsets in position for sources in the third realisation of the International Celestial Reference Frame (ICRF3). Results. Gaia-CRF3 comprises about 1.6 million QSO-like sources, of which 1.2 million have five-parameter astrometric solutions in Gaia DR3 and 0.4 million have six-parameter solutions. The sources span the magnitude range G = 13-21 with a peak density at 20.6 mag, at which the typical positional uncertainty is about 1 mas. The proper motions show systematic errors on the level of 12 μas yr-1 on angular scales greater than 15 deg. For the 3142 optical counterparts of ICRF3 sources in the S/X frequency bands, the median offset from the radio positions is about 0.5 mas, but it exceeds 4 mas in either coordinate for 127 sources. We outline the future of Gaia-CRF in the next Gaia data releases. Appendices give further details on the external catalogues used, how to extract information about the Gaia-CRF3 sources, potential (Galactic) confusion sources, and the estimation of the spin and orientation of an astrometric solution.
  • Item
    Scaling relations of z ∼ 0.25–1.5 galaxies in various environments from the morpho-kinematics analysis of the MAGIC sample
    (Les Ulis : EDP Sciences, 2022) Mercier, W.; Epinat, B.; Contini, T.; Abril-Melgarejo, V.; Boogaard, L.; Brinchmann, J.; Finley, H.; Krajnović, D.; Michel-Dansac, L.; Ventou, E.; Bouché, N.; Dumoulin, J.; Pineda, J.C.B.
    Context. The evolution of galaxies is influenced by many physical processes, which may vary depending on their environment. Aims. We combine Hubble Space Telescope (HST) and Multi-Unit Spectroscopic Explorer (MUSE) data of galaxies at 0.25-1.5 to probe the impact of environment on the size-mass relation, the main sequence (MS) relation, and the Tully-Fisher relation (TFR). Methods. We perform a morpho-kinematics modelling of 593 [O-II] emitters in various environments in the COSMOS area from the MUSE-gAlaxy Groups In Cosmos survey. The HST F814W images are modelled with a bulge-disk decomposition to estimate their bulge-disk ratio, effective radius, and disk inclination. We use the [O-II]λλ3727, 3729 doublet to extract the galaxies ionised gas kinematics maps from the MUSE cubes, and we model those maps for a sample of 146 [O-II] emitters, including bulge and disk components constrained from morphology and a dark matter halo. Results. We find an offset of 0.03 dex (1 significant) on the size-mass relation zero point between the field and the large structure sub-samples, with a richness threshold of N=10 to separate between small and large structures, and of 0.06 dex (2) with N=20. Similarly, we find a 0.1 dex (2A) difference on the MS relation with N=10 and 0.15 dex (3) with N=20. These results suggest that galaxies in massive structures are smaller by 14% and have star formation rates reduced by a factor of 1.31.5 with respect to field galaxies at z 0.7. Finally, we do not find any impact of the environment on the TFR, except when using N=20 with an offset of 0.04 dex (1). We discard the effect of quenching for the largest structures, which would lead to an offset in the opposite direction. We find that, at z0.7, if quenching impacts the mass budget of galaxies in structures, these galaxies would have been affected quite recently and for roughly 0.7-+1.5 Gyr. This result holds when including the gas mass but vanishes once we include the asymmetric drift correction.
  • Item
    The GAPS Programme at TNG: XXXV. Fundamental properties of transiting exoplanet host stars
    (Les Ulis : EDP Sciences, 2022) Biazzo, K.; D’Orazi, V.; Desidera, S.; Turrini, D.; Benatti, S.; Gratton, R.; Magrini, L.; Sozzetti, A.; Baratella, M.; Bonomo, A.S.; Borsa, F.; Claudi, R.; Covino, E.; Damasso, M.; Di Mauro, M.P.; Lanza, A.F.; Maggio, A.; Malavolta, L.; Maldonado, J.; Marzari, F.; Micela, G.; Poretti, E.; Vitello, F.; Affer, L.; Bignamini, A.; Carleo, I.; Cosentino, R.; Fiorenzano, A.F.M.; Giacobbe, P.; Harutyunyan, A.; Leto, G.; Mancini, L.; Molinari, E.; Molinaro, M.; Nardiello, D.; Nascimbeni, V.; Pagano, I.; Pedani, M.; Piotto, G.; Rainer, M.; Scandariato, G.
    Context. Exoplanetary properties strongly depend on stellar properties: to know the planet with accuracy and precision it is necessary to know the star as accurately and precisely as possible. Aims. Our immediate aim is to characterize in a homogeneous and accurate way a sample of 27 transiting planet-hosting stars observed within the Global Architecture of Planetary System program. For the wide visual binary XO-2, we considered both components (N: hosting a transiting planet; S: without a known transiting planet). Our final goal is to widely analyze the sample by deriving several stellar properties, abundances of many elements, kinematic parameters, and discuss them in the context of planetary formation. Methods. We determined the stellar parameters (effective temperature, surface gravity, rotational velocity) and abundances of 26 elements (Li, C, N, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Mn, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Nd, Eu). Our study is based on high-resolution HARPS-N at TNG and FEROS at ESO spectra and uniform techniques. Depending on stellar parameters and chemical elements, we used line equivalent widths or spectral synthesis methods. We derived kinematic properties taking advantage of Gaia data and for the first time in exoplanet host stars we estimated ages using elemental ratios as chemical clocks. Results. The effective temperature of our stars is ∼4400-6700 K, while the iron abundance [Fe/H] is within -0.3 and 0.4 dex. Lithium is present in seven stars. The [X/H] and [X/Fe] abundances versus [Fe/H] are consistent with the Galactic chemical evolution. The dependence of [X/Fe] with the condensation temperature is critically analyzed with respect to stellar and kinematic properties. All targets with measured C and O abundances show C/O < 0.8, compatible with Si present in rock-forming minerals. Mean C/O and [C/O] values are slightly lower than for the Sun. Most of targets show 1.0 < Mg/Si < 1.5, compatible with Mg distributed between olivine and pyroxene, and mean Mg/Si lower than for the Sun. HAT-P-26, the target hosting the lowest-mass planet, shows the highest Mg/Si ratio. From our chemodynamical analysis we find agreement between ages and position within the Galactic disk. Finally, we note a tendency for higher-density planets to be around metal-rich stars and hints of higher stellar abundances of some volatiles (e.g., O) for lower-mass planets. We cannot exclude that part of our results could be also related to the location of the stars within the Galactic disk. Conclusions. We try to trace the planetary migration scenario from the composition of the planets related to the chemical composition of the hosting stars. This kind of study will be useful for upcoming space mission data to get more insights into the formation-migration mechanisms.
  • Item
    The Gaia -ESO Survey: Lithium measurements and new curves of growth
    (Les Ulis : EDP Sciences, 2022) Franciosini, E.; Randich, S.; de Laverny, P.; Biazzo, K.; Feuillet, D.K.; Frasca, A.; Lind, K.; Prisinzano, L.; Tautvaišiene, G.; Lanzafame, A.C.; Smiljanic, R.; Gonneau, A.; Magrini, L.; Pancino, E.; Guiglion, G.; Sacco, G.G.; Sanna, N.; Gilmore, G.; Bonifacio, P.; Jeffries, R.D.; Micela, G.; Prusti, T.; Alfaro, E.J.; Bensby, T.; Bragaglia, A.; François, P.; Korn, A.J.; Van Eck, S.; Bayo, A.; Bergemann, M.; Carraro, G.; Heiter, U.; Hourihane, A.; Jofré, P.; Lewis, J.; Martayan, C.; Monaco, L.; Morbidelli, L.; Worley, C.C.; Zaggia, S.
    Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey that was carried out using the multi-object FLAMES spectrograph at the Very Large Telescope. The survey provides accurate radial velocities, stellar parameters, and elemental abundances for ~115 000 stars in all Milky Way components. Aims. In this paper, we describe the method adopted in the final data release to derive lithium equivalent widths (EWs) and abundances. Methods. Lithium EWs were measured using two different approaches for FGK and M-type stars, to account for the intrinsic differences in the spectra. For FGK stars, we fitted the lithium line using Gaussian components, while direct integration over a predefined interval was adopted for M-type stars. Care was taken to ensure continuity between the two regimes. Abundances were derived using a new set of homogeneous curves of growth that were derived specifically for GES, and which were measured on a synthetic spectral grid consistently with the way the EWs were measured. The derived abundances were validated by comparison with those measured by other analysis groups using different methods. Results. Lithium EWs were measured for ~40 000 stars, and abundances could be derived for ~38 000 of them. The vast majority of the measures (80%) have been obtained for stars in open cluster fields. The remaining objects are stars in globular clusters, or field stars in the Milky Way disc, bulge, and halo. Conclusions. The GES dataset of homogeneous lithium abundances described here will be valuable for our understanding of several processes, from stellar evolution and internal mixing in stars at different evolutionary stages to Galactic evolution.