Search Results

Now showing 1 - 10 of 77
  • Item
    Green transition, investment horizon, and dynamic portfolio decisions
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Semmler, Willi; Lessmann, Kai; Tahri, Ibrahim; Braga, Joao Paulo; Boros, Endre
    This paper analyzes the implications of investors’ short-term oriented asset holding and portfolio decisions (or short-termism), and its consequences on green investments. We adopt a dynamic portfolio model, which contrary to conventional static mean-variance models, allows us to study optimal portfolios for different decision horizons. Our baseline model contains two assets, one asset with fluctuating returns and another asset with a constant risk-free return. The asset with fluctuating returns can arise from fossil-fuel based sectors or from clean energy related sectors. We consider different drivers of short-termism: the discount rate, the nature of discounting (exponential vs. hyperbolic), and the decision horizon of investors itself. We study first the implications of these determinants of short-termism on the portfolio wealth dynamics of the baseline model. We find that portfolio wealth declines faster with a higher discount rate, with hyperbolic discounting, and with shorter decision horizon. We extend our model to include a portfolio of two assets with fluctuating returns. For both model variants, we explore the cases where innovation efforts are spent on fossil fuel or clean energy sources. Detailing dynamic portfolio decisions in such a way may allow us for better pathways to empirical tests and may provide guidance to some online financial decision making.
  • Item
    Management-induced changes in soil organic carbon on global croplands
    (Katlenburg-Lindau [u.a.] : Copernicus, 2022) Karstens, Kristine; Bodirsky, Benjamin Leon; Dietrich, Jan Philipp; Dondini, Marta; Heinke, Jens; Kuhnert, Matthias; Müller, Christoph; Rolinski, Susanne; Smith, Pete; Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander
    Soil organic carbon (SOC), one of the largest terrestrial carbon (C) stocks on Earth, has been depleted by anthropogenic land cover change and agricultural management. However, the latter has so far not been well represented in global C stock assessments. While SOC models often simulate detailed biochemical processes that lead to the accumulation and decay of SOC, the management decisions driving these biophysical processes are still little investigated at the global scale. Here we develop a spatially explicit data set for agricultural management on cropland, considering crop production levels, residue returning rates, manure application, and the adoption of irrigation and tillage practices. We combine it with a reduced-complexity model based on the Intergovernmental Panel on Climate Change (IPCC) tier 2 method to create a half-degree resolution data set of SOC stocks and SOC stock changes for the first 30 cm of mineral soils. We estimate that, due to arable farming, soils have lost around 34.6 GtC relative to a counterfactual hypothetical natural state in 1975. Within the period 1975-2010, this SOC debt continued to expand by 5 GtC (0.14 GtCyr-1) to around 39.6 GtC. However, accounting for historical management led to 2.1 GtC fewer (0.06 GtCyr-1) emissions than under the assumption of constant management. We also find that management decisions have influenced the historical SOC trajectory most strongly by residue returning, indicating that SOC enhancement by biomass retention may be a promising negative emissions technique. The reduced-complexity SOC model may allow us to simulate management-induced SOC enhancement - also within computationally demanding integrated (land use) assessment modeling.
  • Item
    Understanding Socio-metabolic Inequalities Using Consumption Data from Germany
    (New York, NY : Guilford Publ., 2022) Schuster, Antonia; Otto, Ilona M.
    The Earth’s population of seven billion consume varying amounts of planetary resources with varying impacts on the environment. We combine the analytical tools offered by the socio-ecological metabolism and class theory and contribute to a novel social stratification theory to identify the differences in individual resource and energy use. This approach is applied to German society, we use per capita greenhouse gas emissions (GHG) as a proxy for resource and energy use and investigate socio-metabolic characteristics of individuals from an economic, social and cultural perspective. The results show large disparities and inequalities in emission patterns in the German society. For example, the GHG in the lowest and highest emission groups can differ by a magnitude of ten. Income, education, age, gender and regional differences (Eastern vs. Western Germany) result in distinct emission profiles. We question the focus on individual behavioral changes and consumption choices to reduce carbon emissions instead of structural changes through political decisions. We argue that emission differences are directly linked to the effects of inequalities and class differences in capitalist societies. Our research results show that natural resource and energy consumption are important for explaining social differentiation in modern societies.
  • Item
    Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations
    (Katlenburg-Lindau : Copernicus Ges., 2022) Riechers, Keno; Mitsui, Takahito; Boers, Niklas; Ghil, Michael
    The relative role of external forcing and of intrinsic variability is a key question of climate variability in general and of our planet's paleoclimatic past in particular. Over the last 100 years since Milankovic's contributions, the importance of orbital forcing has been established for the period covering the last 2.6gMyr and the Quaternary glaciation cycles that took place during that time. A convincing case has also been made for the role of several internal mechanisms that are active on timescales both shorter and longer than the orbital ones. Such mechanisms clearly have a causal role in Dansgaard-Oeschger and Heinrich events, as well as in the mid-Pleistocene transition. We introduce herein a unified framework for the understanding of the orbital forcing's effects on the climate system's internal variability on timescales from thousands to millions of years. This framework relies on the fairly recent theory of non-autonomous and random dynamical systems, and it has so far been successfully applied in the climate sciences for problems like the El Niño-Southern Oscillation, the oceans' wind-driven circulation, and other problems on interannual to interdecadal timescales. Finally, we provide further examples of climate applications and present preliminary results of interest for the Quaternary glaciation cycles in general and the mid-Pleistocene transition in particular.
  • Item
    Insolation evolution and ice volume legacies determine interglacial and glacial intensity
    (Katlenburg-Lindau : Copernicus Ges., 2022) Mitsui, Takahito; Tzedakis, Polychronis C.; Wolff, Eric W.
    Interglacials and glacials represent low and high ice volume end-members of ice age cycles. While progress has been made in our understanding of how and when transitions between these states occur, their relative intensity has been lacking an explanatory framework. With a simple quantitative model, we show that over the last 800 000 years interglacial intensity can be described as a function of the strength of the previous glacial and the summer insolation at high latitudes in both hemispheres during the deglaciation. Since the precession components in the boreal and austral insolations counteract each other, the amplitude increase in obliquity cycles after 430 000 years ago is imprinted in interglacial intensities, contributing to the manifestation of the so-called Mid-Brunhes Event. Glacial intensity is also linked to the strength of the previous interglacial, the time elapsed from it, and the evolution of boreal summer insolation. Our results suggest that the memory of previous climate states and the time course of the insolation are crucial for understanding interglacial and glacial intensities.
  • Item
    Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt–elevation and glacial isostatic adjustment feedbacks
    (Göttingen : Copernicus Publ., 2022) Zeitz, Maria; Haacker, Jan M.; Donges, Jonathan F.; Albrecht, Torsten; Winkelmann, Ricarda
    The stability of the Greenland Ice Sheet under global warming is governed by a number of dynamic processes and interacting feedback mechanisms in the ice sheet, atmosphere and solid Earth. Here we study the long-term effects due to the interplay of the competing melt-elevation and glacial isostatic adjustment (GIA) feedbacks for different temperature step forcing experiments with a coupled ice-sheet and solid-Earth model. Our model results show that for warming levels above 2 C, Greenland could become essentially ice-free within several millennia, mainly as a result of surface melting and acceleration of ice flow. These ice losses are mitigated, however, in some cases with strong GIA feedback even promoting an incomplete recovery of the Greenland ice volume. We further explore the full-factorial parameter space determining the relative strengths of the two feedbacks: our findings suggest distinct dynamic regimes of the Greenland Ice Sheets on the route to destabilization under global warming - from incomplete recovery, via quasi-periodic oscillations in ice volume to ice-sheet collapse. In the incomplete recovery regime, the initial ice loss due to warming is essentially reversed within 50000years, and the ice volume stabilizes at 61-93 of the present-day volume. For certain combinations of temperature increase, atmospheric lapse rate and mantle viscosity, the interaction of the GIA feedback and the melt-elevation feedback leads to self-sustained, long-term oscillations in ice-sheet volume with oscillation periods between 74000 and over 300000 years and oscillation amplitudes between 15-70 of present-day ice volume. This oscillatory regime reveals a possible mode of internal climatic variability in the Earth system on timescales on the order of 100000years that may be excited by or synchronized with orbital forcing or interact with glacial cycles and other slow modes of variability. Our findings are not meant as scenario-based near-term projections of ice losses but rather providing insight into of the feedback loops governing the "deep future"and, thus, long-term resilience of the Greenland Ice Sheet.
  • Item
    Understanding the Drivers of Coastal Flood Exposure and Risk From 1860 to 2100
    (Hoboken, NJ : Wiley-Blackwell, 2022) Lincke, Daniel; Hinkel, Jochen; Mengel, Matthias; Nicholls, Robert J.
    Global coastal flood exposure (population and assets) has been growing since the beginning of the industrial age and is likely to continue to grow through 21st century. Three main drivers are responsible: (a) climate-related mean sea-level change, (b) vertical land movement contributing to relative sea-level rise, and (c) socio-economic development. This paper attributes growing coastal exposure and flood risk from 1860 to 2100 to these three drivers. For historic flood exposure (1860–2005) we find that the roughly six-fold increase in population exposure and 53-fold increase in asset exposure are almost completely explained by socio-economic development (>97% for population and >99% for assets). For future exposure (2005–2100), assuming a middle-of-the-road regionalized socio-economic scenario (SSP2) without coastal migration and sea-level rise according to RCP2.6 and RCP6.0, climate-change induced sea-level rise will become the most important driver for the growth in population exposure, while growth in asset exposure will still be mainly determined by socio-economic development.
  • Item
    A High-End Estimate of Sea Level Rise for Practitioners
    (Hoboken, NJ : Wiley-Blackwell, 2022) van de Wal, R.S.W.; Nicholls, R J.; Behar, D.; McInnes, K.; Stammer, D.; Lowe, J.A.; Church, J.A.; DeConto, R.; Fettweis, X.; Goelzer, H.; Haasnoot, M.; Haigh, I.D.; Hinkel, J.; Horton, B.P.; James, T.S.; Jenkins, A.; LeCozannet, G.; Levermann, A.; Lipscomb, W.H.; Marzeion, B.; Pattyn, F.; Payne, A.J.; Pfeffer, W.T.; Price, S.F.; Seroussi, H.; Sun, S.; Veatch, W.; White, K.
    Sea level rise (SLR) is a long-lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process-based models. However, risk-averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high-end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high-end scenarios. High-end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1-2.6) relative to pre-industrial values our high-end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5-8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long-term benefits of mitigation. However, even a modest 2°C warming may cause multi-meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high-end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high-end SLR.
  • Item
    Why the sustainable provision of low-carbon electricity needs hybrid markets
    (Oxford : Elsevier, 2022) Keppler, Jan Horst; Quemin, Simon; Saguan, Marcelo
    Deep decarbonization of energy systems poses considerable challenges to electricity markets and there is a growing consensus that an energy-only design based on short-term marginal cost pricing cannot deliver adequate levels of investment and long-term coordination across actors and sectors. Based on the instructive example of the evolution of European electricity market designs, we discuss several shortcomings of energy-only markets and illustrate how ad-hoc policies that intend to address them have limitations of their own, notably a lack of systemwide coordination. Second, we describe how the sheer scale and nature of deep decarbonization targets requiring massive investment in capital-intensive low-carbon technologies exacerbate these issues. Ambitious emission reduction targets thus require an evolution of market design towards hybrid regimes. Hybrid markets separate long-term investment decisions from short-term operations through a balanced and differentiated use of competitive and regulatory design elements to coordinate and de-risk investment. Finally, a historical analysis of the evolution of different electricity market designs shows how hybrid markets constitute contemporary forms of long-run marginal cost pricing that are appropriate for meeting deep decarbonization targets with reduced uncertainty and hence lower private and social costs.
  • Item
    Climate change impacts on European arable crop yields: Sensitivity to assumptions about rotations and residue management
    (Amsterdam [u.a.] : Elsevier, 2022) Faye, Babacar; Webber, Heidi; Gaiser, Thomas; Müller, Christoph; Zhang, Yinan; Stella, Tommaso; Latka, Catharina; Reckling, Moritz; Heckelei, Thomas; Helming, Katharina; Ewert, Frank
    Most large scale studies assessing climate change impacts on crops are performed with simulations of single crops and with annual re-initialization of the initial soil conditions. This is in contrast to the reality that crops are grown in rotations, often with sizable proportion of the preceding crop residue to be left in the fields and varying soil initial conditions from year to year. In this study, the sensitivity of climate change impacts on crop yield and soil organic carbon to assumptions about annual model re-initialization, specification of crop rotations and the amount of residue retained in fields was assessed for seven main crops across Europe. Simulations were conducted for a scenario period 2040–2065 relative to a baseline from 1980 to 2005 using the SIMPLACE1 framework. Results indicated across Europe positive climate change impacts on yield for C3 crops and negative impacts for maize. The consideration of simulating rotations did not have a benefit on yield variability but on relative yield change in response to climate change which slightly increased for C3 crops and decreased for C4 crops when rotation was considered. Soil organic carbon decreased under climate change in both simulations assuming a continuous monocrop and plausible rotations by between 1% and 2% depending on the residue management strategy.