Search Results

Now showing 1 - 10 of 20
  • Item
    An AI-based open recommender system for personalized labor market driven education
    (Amsterdam [u.a.] : Elsevier Science, 2022) Tavakoli, Mohammadreza; Faraji, Abdolali; Vrolijk, Jarno; Molavi, Mohammadreza; Mol, Stefan T.; Kismihók, Gábor
    Attaining those skills that match labor market demand is getting increasingly complicated, not in the last place in engineering education, as prerequisite knowledge, skills, and abilities are evolving dynamically through an uncontrollable and seemingly unpredictable process. Anticipating and addressing such dynamism is a fundamental challenge to twenty-first century education. The burgeoning availability of data, not only on the demand side but also on the supply side (in the form of open educational resources) coupled with smart technologies, may provide a fertile ground for addressing this challenge. In this paper, we propose a novel, Artificial Intelligence (AI) driven approach to the development of an open, personalized, and labor market oriented learning recommender system, called eDoer. We discuss the complete system development cycle starting with a systematic user requirements gathering, and followed by system design, implementation, and validation. Our recommender prototype (1) derives the skill requirements for particular occupations through an analysis of online job vacancy announcements
  • Item
    Microbiome-based biotechnology for reducing food loss post harvest
    (Amsterdam [u.a.] : Elsevier Science, 2022) Wassermann, Birgit; Abdelfattah, Ahmed; Cernava, Tomislav; Wicaksono, Wisnu; Berg, Gabriele
    Microbiomes have an immense potential to enhance plant resilience to various biotic and abiotic stresses. However, intrinsic microbial communities respond to changes in their host's physiology and environment during plant's life cycle. The potential of the inherent plant microbiome has been neglected for a long time, especially for the postharvest period. Currently, close to 50% of all produced fruits and vegetables are lost either during production or storage. Biological control of spoilage and storage diseases is still lacking sufficiency. Today, novel multiomics technologies allow us to study the microbiome and its responses on a community level, which will help to advance current classic approaches and develop more effective and robust microbiome-based solutions for fruit and vegetable storability, quality, and safety.
  • Item
    A novel approach to fabricate load-bearing Ti6Al4V-Barium titanate piezoelectric bone scaffolds by coupling electron beam melting and field-assisted sintering
    (Amsterdam [u.a.] : Elsevier Science, 2022) Riaz, Abdullah; Polley, Christian; Lund, Henrik; Springer, Armin; Seitz, Hermann
    A critical-size bone defect in load-bearing areas is a challenging clinical problem in orthopaedic surgery. Titanium alloy (Ti6Al4V) scaffolds have advantages because of their biomechanical stability but lack electrical activity, which hinders their further use. This work is focused on the fabrication of Ti6Al4V-Barium Titanate (BaTiO3) bulk composite scaffolds to combine the biomechanical stability of Ti6Al4V with electrical activity through BaTiO3. For the first time, a hollow cylindrical Ti6Al4V is additively manufactured by electron beam melting and combined with piezoelectric BaTiO3 powder for joint processing in field-assisted sintering. Scanning electron microscope images on the interface of the Ti6Al4V-BaTiO3 composite scaffold showed that after sintering, the Ti6Al4V lattice structure bounded with BaTiO3 matrix without its major deformation. The Ti6Al4V-BaTiO3 scaffold had average piezoelectric constants of (0.63 ± 0.12) pC/N directly after sintering due to partial dipole alignment of the BaTiO3 tetragonal phase, which increased to (4.92 ± 0.75) pC/N after a successful corona poling. Moreover, the nanoindentation values of Ti6Al4V exhibited an average hardness and Young's modulus of (5.9 ± 0.9) GPa and (130 ± 14) GPa, and BaTiO3 showed (4.0 ± 0.6) GPa and (106 ± 10) GPa, respectively. It reveals that the Ti6Al4V is the harder and stiffer part in the Ti6Al4V-BaTiO3 composite scaffold. Such a scaffold has the potential to treat critical-size bone defects in load-bearing areas and guide tissue regeneration by physical stimulation.
  • Item
    Controlling the Young’s modulus of a ß-type Ti-Nb alloy via strong texturing by LPBF
    (Amsterdam [u.a.] : Elsevier Science, 2022) Pilz, Stefan; Gustmann, Tobias; Günther, Fabian; Zimmermann, Martina; Kühn, Uta; Gebert, Annett
    The ß-type Ti-42Nb alloy was processed by laser powder bed fusion (LPBF) with an infrared top hat laser configuration aiming to control the Young’s modulus by creating an adapted crystallographic texture. Utilizing a top hat laser, a microstructure with a strong 〈0 0 1〉 texture parallel to the building direction and highly elongated grains was generated. This microstructure results in a strong anisotropy of the Young’s modulus that was modeled based on the single crystal elastic tensor and the experimental texture data. Tensile tests along selected loading directions were conducted to study the mechanical anisotropy and showed a good correlation with the modeled data. A Young’s modulus as low as 44 GPa was measured parallel to the building direction, which corresponds to a significant reduction of over 30% compared to the Young’s modulus of the Gaussian reference samples (67–69 GPa). At the same time a high 0.2% yield strength of 674 MPa was retained. The results reveal the high potential of LPBF processing utilizing a top hat laser configuration to fabricate patient-specific implants with an adapted low Young’s modulus along the main loading direction and a tailored mechanical biofunctionality.
  • Item
    Designing the microstructural constituents of an additively manufactured near β Ti alloy for an enhanced mechanical and corrosion response
    (Amsterdam [u.a.] : Elsevier Science, 2022) Hariharan, Avinash; Goldberg, Phil; Gustmann, Tobias; Maawad, Emad; Pilz, Stefan; Schell, Frederic; Kunze, Tim; Zwahr, Christoph; Gebert, Annett
    Additive manufacturing of near β-type Ti-13Nb-13Zr alloys using the laser powder bed fusion process (LPBF) opens up new avenues to tailor the microstructure and subsequent macro-scale properties that aids in developing new generation patient-specific, load-bearing orthopedic implants. In this work, we investigate a wide range of LPBF parameter space to optimize the volumetric energy density, surface characteristics and melt track widths to achieve a stable process and part density of greater than 99 %. Further, optimized sample states were achieved via thermal post-processing using standard capability aging, super-transus (900 °C) and sub-transus (660 °C) heat treatment strategies with varying quenching mediums (air, water and ice). The applied heat treatment strategies induce various fractions of α, martensite (α', α'') in combination with the β phase and strongly correlated with the observed enhanced mechanical properties and a relatively low elastic modulus. In summary, our work highlights a practical strategy for optimizing the mechanical and corrosion properties of a LPBF produced near β-type Ti-13Nb-13Zr alloy via careful evaluation of processing and post-processing steps and the interrelation to the corresponding microstructures. Corrosion studies revealed excellent corrosion resistances of the heat-treated LPBF samples comparable to wrought Ti-13Nb-13Zr alloys.
  • Item
    Additively manufactured AlSi10Mg lattices – Potential and limits of modelling as-designed structures
    (Amsterdam [u.a.] : Elsevier Science, 2022) Gebhardt, Ulrike; Gustmann, Tobias; Giebeler, Lars; Hirsch, Franz; Hufenbach, Julia Kristin; Kästner, Markus
    Additive manufacturing overcomes the restrictions of classical manufacturing methods and enables the production of near-net-shaped, complex geometries. In that context, lattice structures are of high interest due to their superior weight reduction potential. AlSi10Mg is a well-known alloy for additive manufacturing and well suited for such applications due to its high strength to material density ratio. It has been selected in this study for producing bulk material and complex geometries of a strut-based lattice type (rhombic dodecahedron). A detailed characterisation of as-built and heat-treated specimens has been conducted including microstructural analyses, identification of imperfections and rigorous mechanical testing under different load conditions. An isotropic elastic–plastic material model is deduced on the basis of tension test results of bulk material test specimens. Performed experiments under compression, shear, torsion and tension load are compared to their virtual equivalents. With the help of numerical modelling, the overall structural behaviour was simulated using the detailed lattice geometry and was successfully predicted by the presented numerical models. The discussion of the limits of this approach aims to evaluate the potential of the numerical assessment in the modelling of the properties for novel lightweight structures.
  • Item
    Structure-property relationships of imperfect additively manufactured lattices based on triply periodic minimal surfaces
    (Amsterdam [u.a.] : Elsevier Science, 2022) Günther, Fabian; Hirsch, Franz; Pilz, Stefan; Wagner, Markus; Gebert, Annett; Kästner, Markus; Zimmermann, Martina
    Lattices based on triply periodic minimal surfaces (TPMS) have recently attracted increasing interest, but their additive manufacturing (AM) is fraught with imperfections that compromise their structural integrity. Initial research has addressed the influence of process-induced imperfections in lattices, but so far numerical work for TPMS lattices is insufficient. Therefore, in the present study, the structure–property relationships of TPMS lattices, including their imperfections, are investigated experimentally and numerically. The main focus is on a biomimetic Schoen I-WP network lattice made of laser powder bed fusion (LPBF) processed Ti-42Nb designed for bone tissue engineering (BTE). The lattice is scanned by computed tomography (CT) and its as-built morphology is examined before a modeling procedure for artificial reconstruction is developed. The structure–property relationships are analyzed by experimental and numerical compression tests. An anisotropic elastoplastic material model is parameterized for finite element analyses (FEA). The numerical results indicates that the reconstruction of the as-built morphology decisively improves the prediction accuracy compared to the ideal design. This work highlights the central importance of process-related imperfections for the structure–property relationships of TPMS lattices and proposes a modeling procedure to capture their implications.
  • Item
    Bayesian approach for auroral oval reconstruction from ground-based observations
    (Amsterdam [u.a.] : Elsevier Science, 2022) Wagner, D.; Neuhäuser, R.; Arlt, R.
    Naked eye observations of aurorae might be used to obtain information on the large-scale magnetic field of the Earth at historic times. Their abundance may also help bridge gaps in observational time-series of proxies for solar activity such as the sunspot number or cosmogenic isotopes. With information derived from aurora observations like observing site, time of aurora sighting and position on the sky we can reconstruct the auroral oval. Since aurorae are correlated with geomagnetic indices like the Kp index, it is possible to obtain information about the terrestrial magnetic field in the form of the position of the magnetic poles as well as the magnetic disturbance level. Here we present a Bayesian approach to reconstruct the auroral oval from ground-based observations by using two different auroral oval models. With this method we can estimate the position of the magnetic poles in corrected geomagnetic coordinates as well as the Kp index. The method is first validated on synthetic observations before it is applied to four modern geomagnetic storms between 2003 and 2017 where ground-based reports and photographs were used to obtain the necessary information. Based on the four modern geomagnetic storms we have shown, that we are able to reconstruct the pole location with an average accuracy of ≈2° in latitude and ≈11° in longitude. The Kp index can be inferred with a precision of one class. The future goal is to employ the method to historical storms, where we expect somewhat higher uncertainties, since observations may be less accurate or not favorably distributed.
  • Item
    Ground reaction forces and external hip joint moments predict in vivo hip contact forces during gait
    (Amsterdam [u.a.] : Elsevier Science, 2022) Alves, Sónia A.; Polzehl, Jörg; Brisson, Nicholas M.; Bender, Alwina; Agres, Alison N.; Damm, Philipp; Duda, Georg N.
    Younger patients increasingly receive total hip arthroplasty (THA) as therapy for end-stage osteoarthritis. To maintain the long-term success of THA in such patients, avoiding extremely high hip loads, i.e., in vivo hip contact force (HCF), is considered essential. However, in vivo HCFs are difficult to determine and their direct measurement is limited to instrumented joint implants. It remains unclear whether external measurements of ground reaction forces (GRFs), a non-invasive, markerless and clinic-friendly measure can estimate in vivo HCFs. Using data from eight patients with instrumented hip implants, this study determined whether GRF time series data, alone or combined with other scalar variables such as hip joint moments (HJMs) and lean muscle volume (LMV), could predict the resultant HCF (rHCF) impulse using a functional linear modeling approach. Overall, single GRF time series data did not predict in vivo rHCF impulses. However, when GRF time series data were combined with LMV of the gluteus medius or sagittal HJM using a functional linear modeling approach, the in vivo rHCF impulse could be predicted from external measures only. Accordingly, this approach can predict in vivo rHCF impulses, and thus provide patients with useful insight regarding their gait behavior to avoid hip joint overloading.
  • Item
    In situ powder X-ray diffraction during hydrogen reduction of MoO3 to MoO2
    (Amsterdam [u.a.] : Elsevier Science, 2022) Burgstaller, M.; Lund, H.; O'Sullivan, M.; Huppertz, H.
    The hydrogen reduction of molybdenum trioxide to molybdenum dioxide is not yet fully understood as evident by continuous scientific interest. Especially the effect of the potassium content on the reduction process has not yet been considered. We prepared several samples of molybdenum trioxide containing varying amounts of potassium by addition of potassium molybdate (K2MoO4). In situ powder X-ray diffraction experiments were then conducted to study the hydrogen reduction of these samples. We especially focused on the influence of the alkali content and on gaining insight into the importance of the intermediary product γ-Mo4O11. During the reduction process, MoO2 is formed from the reduction of MoO3, which then reacts with the starting material to form γ-Mo4O11. With increasing potassium content, the reduction rate is decreased and the fractional content of γ-Mo4O11 built up during the reduction process is increased. As evident from bulk sample reduction, this results in a significant increase in the grain size visualized via scanning electron microscopy. Our investigations once again underline the importance of γ-Mo4O11 on the morphology of the resulting MoO2 powder.