Search Results

Now showing 1 - 10 of 15
  • Item
    Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds
    (Katlenburg-Lindau : European Geosciences Union, 2021) Tilgner, Andreas; Schaefer, Thomas; Alexander, Becky; Barth, Mary; Collett, Jeffrey L.; Fahey, Kathleen M.; Nenes, Athanasios; Pye, Havala O.T.; Herrmann, Hartmut; McNeill, V. Faye
    The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol particles, cloud, and fog droplets, is also dictated by aqueous-phase chemistry. These feedbacks between acidity and chemistry have crucial implications for the tropospheric lifetime of air pollutants, atmospheric composition, deposition to terrestrial and oceanic ecosystems, visibility, climate, and human health. Atmospheric research has made substantial progress in understanding feedbacks between acidity and multiphase chemistry during recent decades. This paper reviews the current state of knowledge on these feedbacks with a focus on aerosol and cloud systems, which involve both inorganic and organic aqueous-phase chemistry. Here, we describe the impacts of acidity on the phase partitioning of acidic and basic gases and buffering phenomena. Next, we review feedbacks of different acidity regimes on key chemical reaction mechanisms and kinetics, as well as uncertainties and chemical subsystems with incomplete information. Finally, we discuss atmospheric implications and highlight the need for future investigations, particularly with respect to reducing emissions of key acid precursors in a changing world, and the need for advancements in field and laboratory measurements and model tools.
  • Item
    Heat stress risk in European dairy cattle husbandry under different climate change scenarios – uncertainties and potential impacts
    (Göttingen : Copernicus, 2019) Hempel, Sabrina; Menz, Christoph; Pinto, Severino; Galán, Elena; Janke, David; Estellés, Fernando; Müschner-Siemens, Theresa; Wang, Xiaoshuai; Heinicke, Julia; Zhang, Guoqiang; Amon, Barbara; del Prado, Agustín; Amon, Thomas
    In the last decades, a global warming trend was observed. Along with the temperature increase, modifications in the humidity and wind regime amplify the regional and local impacts on livestock husbandry. Direct impacts include the occurrence of climatic stress conditions. In Europe, cows are economically highly relevant and are mainly kept in naturally ventilated buildings that are most susceptible to climate change. The high-yielding cows are particularly vulnerable to heat stress. Modifications in housing management are the main measures taken to improve the ability of livestock to cope with these conditions. Measures are typically taken in direct reaction to uncomfortable conditions instead of in anticipation of a long-term risk for climatic stress. Measures that balance welfare, environmental and economic issues are barely investigated in the context of climate change and are thus almost not available for commercial farms. Quantitative analysis of the climate change impacts on animal welfare and linked economic and environmental factors is rare. Therefore, we used a numerical modeling approach to estimate the future heat stress risk in such dairy cattle husbandry systems. The indoor climate was monitored inside three reference barns in central Europe and the Mediterranean regions. An artificial neuronal network (ANN) was trained to relate the outdoor weather conditions provided by official meteorological weather stations to the measured indoor microclimate. Subsequently, this ANN model was driven by an ensemble of regional climate model projections with three different greenhouse gas concentration scenarios. For the evaluation of the heat stress risk, we considered the number and duration of heat stress events. Based on the changes in the heat stress events, various economic and environmental impacts were estimated. The impacts of the projected increase in heat stress risk varied among the barns due to different locations and designs as well as the anticipated climate change (considering different climate models and future greenhouse gas concentrations). There was an overall increasing trend in number and duration of heat stress events. At the end of the century, the number of annual stress events can be expected to increase by up to 2000, while the average duration of the events increases by up to 22 h compared to the end of the last century. This implies strong impacts on economics, environment and animal welfare and an urgent need for mid-term adaptation strategies. We anticipated that up to one-tenth of all hours of a year, correspondingly one-third of all days, will be classified as critical heat stress conditions. Due to heat stress, milk yield may decrease by about 2.8 % relative to the present European milk yield, and farmers may expect financial losses in the summer season of about 5.4 % of their monthly income. In addition, an increasing demand for emission reduction measures must be expected, as an emission increase of about 16 Gg of ammonia and 0.1 Gg of methane per year can be expected under the anticipated heat stress conditions. The cattle respiration rate increases by up to 60 %, and the standing time may be prolonged by 1 h. This causes health issues and increases the probability of medical treatments. The various impacts imply feedback loops in the climate system which are presently underexplored. Hence, future in-depth studies on the different impacts and adaptation options at different stress levels are highly recommended.
  • Item
    The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty
    (Boston, Mass. : ASM, 2017) Reddington, C.L.; Carslaw, K.S.; Stier, P.; Schutgens, N.; Coe, H.; Liu, D.; Allan, J.; Browse, J.; Pringle, K.J.; Lee, L.A.; Yoshioka, M.; Johnson, J.S.; Regayre, L.A.; Spracklen, D.V.; Mann, G.W.; Clarke, A.; Hermann, M.; Henning, S.; Wex, H.; Kristensen, T.B.; Leaitch, W.R.; Pöschl, U.; Rose, D.; Andreae, M.O.; Schmale, J.; Kondo, Y.; Oshima, N.; Schwarz, J.P.; Nenes, A.; Anderson, B.; Roberts, G.C.; Snider, J.R.; Leck, C.; Quinn, P.K.; Chi, X.; Ding, A.; Jimenez, J.L.; Zhang, Q.
    The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in situ measurements of the particle size distribution, number concentration, and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, to create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to develop new ways to assess the uncertainty associated with comparing sparse point measurements with low-resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modelers and nonspecialist users. Available measurements are extensive, but they are biased to polluted regions of the Northern Hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model–data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.
  • Item
    MIS-11 duration key to disappearance of the Greenland ice sheet
    (London : Nature Publishing Group, 2017) Robinson, A.; Alvarez-Solas, J.; Calov, R.; Ganopolski, A.; Montoya, M.
    Palaeo data suggest that Greenland must have been largely ice free during Marine Isotope Stage 11 (MIS-11). However, regional summer insolation anomalies were modest during this time compared to MIS-5e, when the Greenland ice sheet likely lost less volume. Thus it remains unclear how such conditions led to an almost complete disappearance of the ice sheet. Here we use transient climate-ice sheet simulations to simultaneously constrain estimates of regional temperature anomalies and Greenland's contribution to the MIS-11 sea-level highstand. We find that Greenland contributed 6.1 m (3.9-7.0 m, 95% credible interval) to sea level, ∼7 kyr after the peak in regional summer temperature anomalies of 2.8 °C (2.1-3.4 °C). The moderate warming produced a mean rate of mass loss in sea-level equivalent of only around 0.4 m per kyr, which means the long duration of MIS-11 interglacial conditions around Greenland was a necessary condition for the ice sheet to disappear almost completely.
  • Item
    The plant phenological online database (PPODB): An online database for long-term phenological data
    (Heidelberg : Springer Verlag, 2013) Dierenbach, J.; Badeck, F.-W.; Schaber, J.
    We present an online database that provides unrestricted and free access to over 16 million plant phenological observations from over 8,000 stations in Central Europe between the years 1880 and 2009. Unique features are (1) a flexible and unrestricted access to a full-fledged database, allowing for a wide range of individual queries and data retrieval, (2) historical data for Germany before 1951 ranging back to 1880, and (3) more than 480 curated long-term time series covering more than 100 years for individual phenological phases and plants combined over Natural Regions in Germany. Time series for single stations or Natural Regions can be accessed through a user-friendly graphical geo-referenced interface. The joint databases made available with the plant phenological database PPODB render accessible an important data source for further analyses of long-term changes in phenology. The database can be accessed via www.ppodb.de.
  • Item
    WFDE5: Bias-adjusted ERA5 reanalysis data for impact studies
    (Katlenburg-Lindau : Copernics Publications, 2020) Cucchi, Marco; Weedon, Graham P.; Amici, Alessandro; Bellouin, Nicolas; Lange, Stefan; Müller Schmied, Hannes; Hersbach, Hans; Buontempo, Carlo
    The WFDE5 dataset has been generated using the WATCH Forcing Data (WFD) methodology applied to surface meteorological variables from the ERA5 reanalysis. The WFDEI dataset had previously been generated by applying the WFD methodology to ERA-Interim. The WFDE5 is provided at 0.5 spatial resolution but has higher temporal resolution (hourly) compared to WFDEI (3-hourly). It also has higher spatial variability since it was generated by aggregation of the higher-resolution ERA5 rather than by interpolation of the lower-resolution ERA-Interim data. Evaluation against meteorological observations at 13 globally distributed FLUXNET2015 sites shows that, on average, WFDE5 has lower mean absolute error and higher correlation than WFDEI for all variables. Bias-adjusted monthly precipitation totals of WFDE5 result in more plausible global hydrological water balance components when analysed in an uncalibrated hydrological model (WaterGAP) than with the use of raw ERA5 data for model forcing. The dataset, which can be downloaded from https://doi.org/10.24381/cds.20d54e34 (C3S, 2020b), is distributed by the Copernicus Climate Change Service (C3S) through its Climate Data Store (CDS, C3S, 2020a) and currently spans from the start of January 1979 to the end of 2018. The dataset has been produced using a number of CDS Toolbox applications, whose source code is available with the data - allowing users to regenerate part of the dataset or apply the same approach to other data. Future updates are expected spanning from 1950 to the most recent year. A sample of the complete dataset, which covers the whole of the year 2016, is accessible without registration to the CDS at https://doi.org/10.21957/935p-cj60 (Cucchi et al., 2020). © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Multimodel assessments of human and climate impacts on mean annual streamflow in China
    (Munich : EGU, 2019) Liu, Xingcai; Liu, Wenfeng; Yang, Hong; Tang, Qiuhong; Flörke, Martina; Masaki, Yoshimitsu; Müller Schmied, Hannes; Ostberg, Sebastian; Pokhrel, Yadu; Satoh, Yusuke; Wada, Yoshihide
    Human activities, as well as climate variability, have had increasing impacts on natural hydrological systems, particularly streamflow. However, quantitative assessments of these impacts are lacking on large scales. In this study, we use the simulations from six global hydrological models driven by three meteorological forcings to investigate direct human impact (DHI) and climate impact on streamflow in China. Results show that, in the sub-periods of 1971-1990 and 1991-2010, one-fifth to one-third of mean annual streamflow (MAF) was reduced due to DHI in northern basins, and much smaller ( 4 %) MAF was reduced in southern basins. From 1971-1990 to 1991-2010, total MAF changes range from-13%to 10%across basins wherein the relative contributions of DHI change and climate variability show distinct spatial patterns. DHI change caused decreases in MAF in 70% of river segments, but climate variability dominated the total MAF changes in 88% of river segments of China. In most northern basins, climate variability results in changes of-9% to 18% in MAF, while DHI change results in decreases of 2% to 8% in MAF. In contrast with the climate variability that may increase or decrease streamflow, DHI change almost always contributes to decreases in MAF over time, with water withdrawals supposedly being the major impact on streamflow. This quantitative assessment can be a reference for attribution of streamflow changes at large scales, despite remaining uncertainty. We highlight the significant DHI in northern basins and the necessity to modulate DHI through improved water management towards a better adaptation to future climate change. © 2019 Author(s).
  • Item
    Pacific climate reflected in Waipuna Cave drip water hydrochemistry
    (Munich : EGU, 2020) Nava-Fernandez, Cinthya; Hartland, Adam; Gázquez, Fernando; Kwiecien, Ola; Marwan, Norbert; Fox, Bethany; Hellstrom, John; Pearson, Andrew; Ward, Brittany; French, Amanda; Hodell, David A.; Immenhauser, Adrian; Breitenbach, Sebastian F.M.
    Cave microclimate and geochemical monitoring is vitally important for correct interpretations of proxy time series from speleothems with regard to past climatic and environmental dynamics. We present results of a comprehensive cave-monitoring programme in Waipuna Cave in the North Island of New Zealand, a region that is strongly influenced by the Southern Westerlies and the El Niño-Southern Oscillation (ENSO). This study aims to characterise the response of the Waipuna Cave hydrological system to atmospheric circulation dynamics in the southwestern Pacific region in order to assure the quality of ongoing palaeo-environmental reconstructions from this cave. Drip water from 10 drip sites was collected at roughly monthly intervals for a period of ca. 3 years for isotopic (d18O, dD, d-excess parameter, d17O, and 17Oexcess) and elemental (Mg=Ca and Sr=Ca) analysis. The monitoring included spot measurements of drip rates and cave air CO2 concentration. Cave air temperature and drip rates were also continuously recorded by automatic loggers. These datasets were compared to surface air temperature, rainfall, and potential evaporation from nearby meteorological stations to test the degree of signal transfer and expression of surface environmental conditions in Waipuna Cave hydrochemistry. Based on the drip response dynamics to rainfall and other characteristics, we identified three types of discharge associated with hydrological routing in Waipuna Cave: (i) type 1-diffuse flow, (ii) type 2-fracture flow, and (iii) type 3-combined flow. Drip water isotopes do not reflect seasonal variability but show higher values during severe drought. Drip water d18O values are characterised by small variability and reflect the mean isotopic signature of precipitation, testifying to rapid and thorough homogenisation in the epikarst. Mg=Ca and Sr=Ca ratios in drip waters are predominantly controlled by prior calcite precipitation (PCP). Prior calcite precipitation is strongest during austral summer (December-February), reflecting drier conditions and a lack of effec tive infiltration, and is weakest during the wet austral winter (July-September). The Sr=Ca ratio is particularly sensitive to ENSO conditions due to the interplay of congruent or incongruent host rock dissolution, which manifests itself in lower Sr=Ca in above-average warmer and wetter (La Niña-like) conditions. Our microclimatic observations at Waipuna Cave provide a valuable baseline for the rigorous interpretation of speleothem proxy records aiming at reconstructing the past expression of Pacific climate modes. © 2020 Author(s).
  • Item
    EURODELTA III exercise: An evaluation of air quality models’ capacity to reproduce the carbonaceous aerosol
    (Amsterdam : Elsevier, 2019) Mircea, Mihaela; Bessagnet, Bertrand; D'Isidoro, Massimo; Pirovano, Guido; Aksoyoglu, Sebnem; Ciarelli, Giancarlo; Tsyro, Svetlana; Manders, Astrid; Bieser, Johannes; Stern, Rainer; Vivanco, Marta García; Cuvelier, Cornelius; Aas, Wenche; Prévôt, André S.H.; Aulinger, Armin; Briganti, Gino; Calori, Giuseppe; Cappelletti, Andrea; Colette, Augustin; Couvidat, Florian; Fagerli, Hilde; Finardi, Sandro; Kranenburg, Richard; Rouïl, Laurence; Silibello, Camillo; Spindler, Gerald; Poulain, Laurent; Herrmann, Hartmut; Jimenez, Jose L.; Day, Douglas A.; Tiitta, Petri; Carbone, Samara
    The carbonaceous aerosol accounts for an important part of total aerosol mass, affects human health and climate through its effects on physical and chemical properties of the aerosol, yet the understanding of its atmospheric sources and sinks is still incomplete. This study shows the state-of-the-art in modelling carbonaceous aerosol over Europe by comparing simulations performed with seven chemical transport models (CTMs) currently in air quality assessments in Europe: CAMx, CHIMERE, CMAQ, EMEP/MSC-W, LOTOS-EUROS, MINNI and RCGC. The simulations were carried out in the framework of the EURODELTA III modelling exercise and were evaluated against field measurements from intensive campaigns of European Monitoring and Evaluation Programme (EMEP) and the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI). Model simulations were performed over the same domain, using as much as possible the same input data and covering four seasons: summer (1–30 June 2006), winter (8 January – 4 February 2007), autumn (17 September- 15 October 2008) and spring (25 February - 26 March 2009). The analyses of models’ performances in prediction of elemental carbon (EC) for the four seasons and organic aerosol components (OA) for the last two seasons show that all models generally underestimate the measured concentrations. The maximum underestimation of EC is about 60% and up to about 80% for total organic matter (TOM). The underestimation of TOM outside of highly polluted area is a consequence of an underestimation of secondary organic aerosol (SOA), in particular of its main contributor: biogenic secondary aerosol (BSOA). This result is independent on the SOA modelling approach used and season. The concentrations and daily cycles of total primary organic matter (TPOM) are generally better reproduced by the models since they used the same anthropogenic emissions. However, the combination of emissions and model formulation leads to overestimate TPOM concentrations in 2009 for most of the models. All models capture relatively well the SOA daily cycles at rural stations mainly due to the spatial resolution used in the simulations. For the investigated carbonaceous aerosol compounds, the differences between the concentrations simulated by different models are lower than the differences between the concentrations simulated with a model for different seasons. © 2019 The Authors
  • Item
    Global perturbation of stratospheric water and aerosol burden by Hunga eruption
    (London : Springer Nature, 2022) Khaykin, Sergey; Podglajen, Aurelien; Ploeger, Felix; Grooß, Jens-Uwe; Tence, Florent; Bekki, Slimane; Khlopenkov, Konstantin; Bedka, Kristopher; Rieger, Landon; Baron, Alexandre; Godin-Beekmann, Sophie; Legras, Bernard; Sellitto, Pasquale; Sakai, Tetsu; Barnes, John; Uchino, Osamu; Morino, Isamu; Nagai, Tomohiro; Wing, Robin; Baumgarten, Gerd; Gerding, Michael; Duflot, Valentin; Payen, Guillaume; Jumelet, Julien; Querel, Richard; Liley, Ben; Bourassa, Adam; Clouser, Benjamin; Feofilov, Artem; Hauchecorne, Alain; Ravetta, François
    The eruption of the submarine Hunga volcano in January 2022 was associated with a powerful blast that injected volcanic material to altitudes up to 58 km. From a combination of various types of satellite and ground-based observations supported by transport modeling, we show evidence for an unprecedented increase in the global stratospheric water mass by 13% relative to climatological levels, and a 5-fold increase of stratospheric aerosol load, the highest in the last three decades. Owing to the extreme injection altitude, the volcanic plume circumnavigated the Earth in only 1 week and dispersed nearly pole-to-pole in three months. The unique nature and magnitude of the global stratospheric perturbation by the Hunga eruption ranks it among the most remarkable climatic events in the modern observation era, with a range of potential long-lasting repercussions for stratospheric composition and climate.