Search Results

Now showing 1 - 3 of 3
  • Item
    Energy-dependent dielectric tensor axes in monoclinic α-3,4,9,10-perylene tetracarboxylic dianhydride
    (Amsterdam [u.a.] : Elsevier, 2023) Alonso, M.I.; Garriga, M.; Ossó, J.O.; Schreiber, F.; Scholz, R.
    We have determined the complex dielectric tensor of single crystalline 3,4,9,10-perylene tetracarboxylic dianhydride (α-PTCDA) as a function of energy in the range between 1.4 and 5.0 eV. The results obtained reflect the monoclinic symmetry of the crystal: The principal axes of the real and the imaginary part of the tensor in general do not coincide and show chromatic dispersion. Monoclinic behavior allows rotation of the components ɛX and ɛZ in the plane perpendicular to the unique symmetry axis Y. The experimental results indicate that the energies of the optical transitions observed in the weak ɛX component coincide with energies in which a resonance effect due to coupling with the stronger ɛZ component occurs. These resonances appear at energies close to electronic excitations such as the optical gap, the transport gap and the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) peak-to-peak gap and their assignments are discussed based on theoretical calculations.
  • Item
    Spontaneous fluctuations in a plasma ion assisted deposition – correlation between deposition conditions and vanadium oxide thin film growth
    (Amsterdam [u.a.] : Elsevier, 2021) Frank, Anna; Dias, Miguel; Hieke, Stefan; Kruth, Angela; Scheu, Christina
    In this work correlations between thin film crystallinity of plasma ion assisted electron beam evaporated vanadium oxide (VOx) and fluctuations of the deposition parameters during the growth process could be observed by in situ monitoring deposition conditions and electron microscopy studies. In the presented case, unintentional fluctuations in the gas flow at the plasma source caused by inhomogeneous melting of the target material lead to an increase in discharge current and therefore a decrease of the oxygen flow in the plasma source, resulting in the formation of highly crystalline bands due to a temporary increase in energy flux. The major part of the VOx thin film consists of a large number of nanocrystals embedded in an amorphous phase. In-depth structural analysis confirms a mixture of V2O5, in different modifications, VO2, as well as the mixed-valence oxides V4O9 and V6O13, for nanocrystalline parts and crystalline bands. These differ mainly in the degree of crystallinity being influenced by variations in discharge current, and partly in the amount of higher oxidized vanadium oxides. In future, precisely controlled variation of plasma source conditions will open up pathways to control and tailor crystallinity of electron beam evaporated thin films, allowing for production methods for patterned thin films or layers with graduated crystallinity. This may give rise to a new class of coatings of nanohybrids combining amorphous VOx with low electrical conductivity and crystalline domains providing a higher electrical conductivity which is useful for electrochromic displays, smart windows, and solar cells.
  • Item
    Influence of molecular weight of polycation polydimethyldiallylammonium and carbon nanotube content on electric conductivity of layer-by-layer films
    (Amsterdam [u.a.] : Elsevier, 2022) Neuber, Sven; Sill, Annekatrin; Efthimiopoulos, Ilias; Nestler, Peter; Fricke, Katja; Helm, Christiane A.
    For biological and engineering applications, nm-thin films with high electrical conductivity and tunable sheet resistance are desirable. Multilayers of polydimethyldiallylammonium chloride (PDADMA) with two different molecular weights (322 and 44.3 kDa) and oxidized carbon nanotubes (CNTs) were constructed using the layer-by-layer technique. The surface coverage of the CNTs was monitored with a selected visible near infrared absorption peak. Both the film thickness and the surface coverage of the CNTs increased linearly with the number of CNT/PDADMA bilayers deposited (film thickness up to 80 nm). Atomic force microscopy images showed a predominantly surface-parallel orientation of CNTs. Ohmic behavior with constant electrical conductivity of each CNT/PDADMA film and conductivity up to 4 · 103 S/m was found. A change in PDADMA molecular weight by almost a factor of ten has no effect on the film thickness and electrical conductivity, only the film/air roughness is reduced. However, increasing CNT concentration in the deposition dispersion from 0.15 up to 0.25 mg/ml results in an increased thickness of a CNT/PDADMA bilayer (by a factor of three). The increased bilayer thickness is accompanied by a decreased electrical conductivity (by a factor of four). The decreased conductivity is attributed to the increased monomer/CNT ratio.