Search Results

Now showing 1 - 7 of 7
  • Item
    Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork
    (Washington, DC : ACS Publ., 2022) Włodarczyk-Biegun, Małgorzata K.; Villiou, Maria; Koch, Marcus; Muth, Christina; Wang, Peixi; Ott, Jenna; del Campo, Aranzazu
    The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure-function relation in natural tissues and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly(caprolactone) constructs with a height of 125-500 μm and fiber diameters of 10-12 μm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa and a static compression modulus in the range of 6-360 kPa are obtained by varying the scaffold design, that is, the density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8-14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW for reconstructing complex morphological features of natural tissues.
  • Item
    Interatomic and Intermolecular Coulombic Decay
    (Washington, DC : ACS Publ., 2020) Jahnke, Till; Hergenhahn, Uwe; Winter, Bernd; Dörner, Reinhard; Frühling, Ulrike; Demekhin, Philipp V.; Gokhberg, Kirill; Cederbaum, Lorenz S.; Ehresmann, Arno; Knie, André; Dreuw, Andreas
    Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed. © 2020 American Chemical Society
  • Item
    Single-Polymer Friction Force Microscopy of dsDNA Interacting with a Nanoporous Membrane
    (Washington, DC : ACS Publ., 2023) Schellnhuber, Kordula; Blass, Johanna; Hübner, Hanna; Gallei, Markus; Bennewitz, Roland
    Surface-grafted polymers can reduce friction between solids in liquids by compensating the normal load with osmotic pressure, but they can also contribute to friction when fluctuating polymers entangle with the sliding counter face. We have measured forces acting on a single fluctuating double-stranded DNA polymer, which is attached to the tip of an atomic force microscope and interacts intermittently with nanometer-scale methylated pores of a self-assembled polystyrene-block-poly(4-vinylpyridine) membrane. Rare binding of the polymer into the pores is followed by a stretching of the polymer between the laterally moving tip and the surface and by a force-induced detachment. We present results for the velocity dependence of detachment forces and of attachment frequency and discuss them in terms of rare excursions of the polymer beyond its equilibrium configuration.
  • Item
    Ruthenium Complexes with PNN Pincer Ligands Based on (Chiral) Pyrrolidines: Synthesis, Structure, and Dynamic Stereochemistry
    (Washington, DC : ACS Publ., 2020) Bootsma, Johan; Guo, Beibei; de Vries, Johannes G.; Otten, Edwin
    We report the synthesis of lutidine-based PNN type metal pincer complexes, using achiral (pyrrolidine) as well as chiral ((R,R)-2,5-dimethylpyrrolidine and (R)-2-methylpyrrolidine) substituents at the N side arm of the pincer ligand. With the six-coordinate saturated Ru pincers (PNN)Ru(H)(CO)(Cl), which have an aromatic pyridine ligand backbone, as the starting materials, treatment with strong base (KOtBu) generated the corresponding dearomatized pincer complexes (PNN')Ru(H)(CO). Spectroscopic, crystallographic, and computational studies demonstrate that the C-centered chirality from the chiral pyrrolidine group exerts a small but non-negligible influence on the preferred stereochemistry at Ru (and N in the case of (R)-2-methylpyrrolidine) that is reflected in the equilibrium distribution of diastereomers of these Ru complexes in solution. Our data show that the N- and Ru-based stereogenic centers in this class of compounds are stereochemically labile and the mechanisms for epimerization are discussed. Inversion at the Ru center in the dearomatized complexes is proposed to occur via a rearomatized Ru(0) intermediate in which the Ru-bound hydride is transferred to the ligand. Support for this comes from the spectroscopic characterization of a closely related Ru(0) species that is obtained by reaction with CO. Testing these catalysts in enantioselective oxa-Michael addition or transfer hydrogenation led to racemic products, while a low ee (8%) was observed in the hydrogenation of 4-fluoroacetophenone. The lack of appreciable enantioinduction with these catalysts is ascribed to the kinetic lability of the Ru stereocenter, which results in the formation of equilibrium mixtures in which several diastereomers of the catalyst are present. Copyright © 2020 American Chemical Society.
  • Item
    Structure and Bottom-up Formation Mechanism of Multisheet Silica-Based Nanoparticles Formed in an Epoxy Matrix through an In Situ Process
    (Washington, DC : ACS Publ., 2021) Branda, Francesco; Bifulco, Aurelio; Jehnichen, Dieter; Parida, Dambarudhar; Pauer, Robin; Passaro, Jessica; Gaan, Sabyasachi; Pospiech, Doris; Durante, Massimo
    Organic/inorganic hybrid composite materials with the dispersed phases in sizes down to a few tens of nanometers raised very great interest. In this paper, it is shown that silica/epoxy nanocomposites with a silica content of 6 wt % may be obtained with an “in situ” sol–gel procedure starting from two precursors: tetraethyl orthosilicate (TEOS) and 3-aminopropyl-triethoxysilane (APTES). APTES also played the role of a coupling agent. The use of advanced techniques (bright-field high-resolution transmission electron microscopy, HRTEM, and combined small- and wide-angle X-ray scattering (SAXS/WAXS) performed by means of a multirange device Ganesha 300 XL+) allowed us to evidence a multisheet structure of the nanoparticles instead of the gel one typically obtained through a sol–gel route. A mechanism combining in a new manner well-assessed knowledge regarding sol–gel chemistry, emulsion formation, and Ostwald ripening allowed us to give an explanation for the formation of the observed lamellar nanoparticles.
  • Item
    Synthesis, Characterization, and Physicochemical Performance of Nonionic Surfactants via PEG Modification of Epoxides of Alkyl Oleate Esters
    (Washington, DC : ACS Publ., 2023) Ogunjobi, Joseph K.; Farmer, Thomas J.; Clark, James H.; McElroy, Con Robert
    The synthesis of surfactants from fatty acid esters via epoxide chemistry has been known for its accompanying challenges, which usually involve the use of toxic homogeneous catalysts in the ring-opening reaction step and generation of many side reaction products. This paper presents environmentally benign routes to a library of nonionic surfactants via a three-step synthesis involving transesterification of methyl oleate to alkyl oleates, epoxidation of the oleate alkene, and solventless heterogeneously catalyzed ring opening of the epoxides with poly(ethylene glycols) of varying chain length under a short reaction time (60 min). The processes were highly atom efficient and afforded a minimum surfactant yield of 80% with limited or negligible side reaction products. The intermediate molecules and synthesized surfactants were purified and comprehensively characterized, including physicochemical measurements: dynamic surface tension and equilibrium surface tension. Additionally, the hydrophilic-lipophilic balance (HLB) concept was used to comprehensively scan through the polarity behaviors of the surfactants’ head and tail in solution as a prediction of their end use. The results showed that surfactants have a critical micelle concentration (CMC) lower than 0.1 mg/ml as the alkyl oleate increases in length from ethyl to decyl and that the lower-molecular-weight surfactants reached equilibrium faster than the higher-molecular-weight surfactants. HLB results showed that the surfactants can be applied as oil-in-water emulsifiers, detergents, solubilizers, and wetting agents. In general, the synthesized surfactants potentially possess switchable properties for use in industrial formulations, as the alkyl chain length and the ethylene oxide number in the surfactant’s structure are varied.
  • Item
    Atomic-Scale Mapping and Quantification of Local Ruddlesden-Popper Phase Variations
    (Washington, DC : ACS Publ., 2022) Fleck, Erin E.; Barone, Matthew R.; Nair, Hari P.; Schreiber, Nathaniel J.; Dawley, Natalie M.; Schlom, Darrell G.; Goodge, Berit H.; Kourkoutis, Lena F.
    The Ruddlesden-Popper (An+1BnO3n+1) compounds are highly tunable materials whose functional properties can be dramatically impacted by their structural phase n. The negligible differences in formation energies for different n can produce local structural variations arising from small stoichiometric deviations. Here, we present a Python analysis platform to detect, measure, and quantify the presence of different n-phases based on atomic-resolution scanning transmission electron microscopy (STEM) images. We employ image phase analysis to identify horizontal Ruddlesden-Popper faults within the lattice images and quantify the local structure. Our semiautomated technique considers effects of finite projection thickness, limited fields of view, and lateral sampling rates. This method retains real-space distribution of layer variations allowing for spatial mapping of local n-phases to enable quantification of intergrowth occurrence and qualitative description of their distribution suitable for a wide range of layered materials.