Search Results

Now showing 1 - 8 of 8
  • Item
    Ground reaction forces and external hip joint moments predict in vivo hip contact forces during gait
    (Amsterdam [u.a.] : Elsevier Science, 2022) Alves, Sónia A.; Polzehl, Jörg; Brisson, Nicholas M.; Bender, Alwina; Agres, Alison N.; Damm, Philipp; Duda, Georg N.
    Younger patients increasingly receive total hip arthroplasty (THA) as therapy for end-stage osteoarthritis. To maintain the long-term success of THA in such patients, avoiding extremely high hip loads, i.e., in vivo hip contact force (HCF), is considered essential. However, in vivo HCFs are difficult to determine and their direct measurement is limited to instrumented joint implants. It remains unclear whether external measurements of ground reaction forces (GRFs), a non-invasive, markerless and clinic-friendly measure can estimate in vivo HCFs. Using data from eight patients with instrumented hip implants, this study determined whether GRF time series data, alone or combined with other scalar variables such as hip joint moments (HJMs) and lean muscle volume (LMV), could predict the resultant HCF (rHCF) impulse using a functional linear modeling approach. Overall, single GRF time series data did not predict in vivo rHCF impulses. However, when GRF time series data were combined with LMV of the gluteus medius or sagittal HJM using a functional linear modeling approach, the in vivo rHCF impulse could be predicted from external measures only. Accordingly, this approach can predict in vivo rHCF impulses, and thus provide patients with useful insight regarding their gait behavior to avoid hip joint overloading.
  • Item
    Tuning the corona-core ratio of polyplex micelles for selective oligonucleotide delivery to hepatocytes or hepatic immune cells
    (Amsterdam [u.a.] : Elsevier Science, 2023) Foo, WanLing; Cseresnyés, Zoltán; Rössel, Carsten; Teng, Yingfeng; Ramoji, Anuradha; Chi, Mingzhe; Hauswald, Walter; Huschke, Sophie; Hoeppener, Stephanie; Popp, Jürgen; Schacher, Felix H.; Sierka, Marek; Figge, Marc Thilo; Press, Adrian T.; Bauer, Michael
    Targeted delivery of oligonucleotides or small molecular drugs to hepatocytes, the liver's parenchymal cells, is challenging without targeting moiety due to the highly efficient mononuclear phagocyte system (MPS) of the liver. The MPS comprises Kupffer cells and specialized sinusoidal endothelial cells, efficiently clearing nanocarriers regardless of their size and surface properties. Physiologically, this non-parenchymal shield protects hepatocytes; however, these local barriers must be overcome for drug delivery. Nanocarrier structural properties strongly influence tissue penetration, in vivo pharmacokinetics, and biodistribution profile. Here we demonstrate the in vivo biodistribution of polyplex micelles formed by polyion complexation of short interfering (si)RNA with modified poly(ethylene glycol)-block-poly(allyl glycidyl ether) (PEG-b-PAGE) diblock copolymer that carries amino moieties in the side chain. The ratio between PEG corona and siRNA complexed PAGE core of polyplex micelles was chemically varied by altering the degree of polymerization of PAGE. Applying Raman-spectroscopy and dynamic in silico modeling on the polyplex micelles, we determined the corona-core ratio (CCR) and visualized the possible micellar structure with varying CCR. The results for this model system reveal that polyplex micelles with higher CCR, i.e., better PEG coverage, exclusively accumulate and thus allow passive cell-type-specific targeting towards hepatocytes, overcoming the macrophage-rich reticuloendothelial barrier of the liver.
  • Item
    Evaluating the grassland NPP dynamics in response to climate change in Tanzania
    (Amsterdam [u.a.] : Elsevier Science, 2021) Zarei, Azin; Chemura, Abel; Gleixner, Stephanie; Hoff, Holger
    Livestock is important for livelihoods of millions of people across the world and yet climate change risk and impacts assessments are predominantly on cropping systems. Climate change has significant impacts on Net Primary Production (NPP) which is a grassland dynamics indicator. This study aimed to analyze the spatio-temporal changes of NPP under climate scenario RCP2.6 and RCP8.5 in the grassland of Tanzania by 2050 and link this to potential for key livestock species. To this end, a regression model to estimate NPP was developed based on temperature (T), precipitation (P) and evapotranspiration (ET) during the period 2001–2019. NPP fluctuation maps under future scenarios were produced as difference maps of the current (2009–2019) and future (2050). The vulnerable areas whose NPP is mostly likely to get affected by climate change in 2050 were identified. The number of livestock units in grasslands was estimated according to NPP in grasslands of Tanzania at the Provincial levels. The results indicate the mean temperature and evapotranspiration are projected to increase under both emission scenarios while precipitation will decrease. NPP is significantly positively correlated with Tmax and ET and projected increases in these variables will be beneficial to NPP under climate change. Increases of 17% in 2050 under RCP8.5 scenario are projected, with the southern parts of the country projected to have the largest increase in NPP. The southwest areas showed a decreasing trend in mean NPP of 27.95% (RCP2.6) and 13.43% (RCP8.5). The highest decrease would occur in the RCP2.6 scenario in Ruvuma Province, by contrast, the mean NPP value in the western, eastern, and central parts would increase in 2050 under both Scenarios, the largest increase would observe in Kilimanjaro, Dar-Es-Salaam and Dodoma Provinces. It was found that the number of grazing livestock such as cattle, sheep, and goats will increase in the Tanzania grasslands under both climate scenarios. As the grassland ecosystems under intensive exploitation are fragile ecosystems, a combination of improving grassland productivity and grassland conservation under environmental pressures such as climate change should be considered for sustainable grassland management.
  • Item
    Cylindrospermopsin is effectively degraded in water by pulsed corona-like and dielectric barrier discharges
    (Amsterdam [u.a.] : Elsevier Science, 2020) Schneider, Marcel; Rataj, Raphael; Kolb, Juergen F.; Bláha, Luděk
    Cylindrospermopsin (CYN) is an important cyanobacterial toxin posing a major threat to surface waters during cyanobacterial blooms. Hence, methods for cyanotoxin removal are required to confront seasonal or local incidences to sustain the safety of potable water reservoirs. Non-thermal plasmas provide the possibility for an environmentally benign treatment which can be adapted to specific concentrations and environmental conditions without the need of additional chemicals. We therefore investigated the potential of two different non-thermal plasma approaches for CYN degradation, operated either in a water mist, i.e. in air, or submerged in water. A degradation efficacy of 0.03 ± 0.00 g kWh−1 L−1 was found for a dielectric barrier discharge (DBD) operated in air, while a submerged pulsed corona-like discharge resulted in an efficacy of 0.24 ± 0.02 g kWh−1 L−1. CYN degradation followed a pseudo zeroth order or pseudo first order reaction kinetic, respectively. Treatment efficacy of the corona-like discharge submerged in water increased with pH values of the initial solution changing from 5.0 to 7.5. Notably, a pH-depending residual oxidative effect was observed for the submerged discharge, resulting in ongoing CYN degradation, even without further plasma treatment. In this case hydroxyl radicals were identified as the dominant oxidants of CYN at acidic pH values. In comparison, degradation by the DBD could be related primarily to the generation of ozone. © 2020 The AuthorsThe degradation of cylindrospermopsin by a pulsed corona-like discharge in water was more effective compared with a pulsed dielectric barrier discharge in air around a water mist. © 2020 The Authors
  • Item
    Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use
    (Amsterdam [u.a.] : Elsevier Science, 2020) Walsh, Kerry B.; Blasco, José; Zude-Sasse, Manuela; Sun, Xudong
    The application of visible (Vis; 400–750 nm) and near infrared red (NIR; 750–2500 nm) region spectroscopy to assess fruit and vegetables is reviewed in context of ‘point’ spectroscopy, as opposed to multi- or hyperspectral imaging. Vis spectroscopy targets colour assessment and pigment analysis, while NIR spectroscopy has been applied to assessment of macro constituents (principally water) in fresh produce in commercial practice, and a wide range of attributes in the scientific literature. This review focusses to key issues relevant to the widespread implementation of Vis-NIR technology in the fruit sector. A background to the concepts and technology involved in the use of Vis-NIR spectroscopy is provided and instrumentation for in-field and in-line applications, which has been available for two and three decades, respectively, is described. A review of scientific effort is made for the period 2015 - February 2020, in terms of the application areas, instrumentation, chemometric methods and validation procedures, and this work is critiqued through comparison to techniques in commercial use, with focus to wavelength region, optical geometry, experimental design, and validation procedures. Recommendations for future research activity in this area are made, e.g., application development with consideration of the distribution of the attribute of interest in the product and the matching of optically sampled and reference method sampled volume; instrumentation comparisons with consideration of repeatability, optimum optical geometry and wavelength range). Recommendations are also made for reporting requirements, viz. description of the application, the reference method, the composition of calibration and test populations, chemometric reporting and benchmarking to a known instrument/method, with the aim of maximising useful conclusions from the extensive work being done around the world.
  • Item
    Diversity of methicillin-resistant coagulase-negative Staphylococcus spp. and methicillin-resistant Mammaliicoccus spp. isolated from ruminants and New World camelids
    (Amsterdam [u.a.] : Elsevier Science, 2021) Schauer, B.; Szostak, M.P.; Ehricht, R.; Monecke, S.; Feßler, A.T.; Schwarz, S.; Spergser, J.; Krametter-Frötscher, R.; Loncaric, I.
    Information about livestock carrying methicillin-resistant coagulase-negative staphylococci and mammaliicocci (MRCoNS/MRM) is scarce. The study was designed to gain knowledge of the prevalence, the phenotypic and genotypic antimicrobial resistance and the genetic diversity of MRCoNS/MRM originating from ruminants and New World camelids. In addition, a multi-locus sequence typing scheme for the characterization of Mammaliicoccus (formerly Staphylococcus) sciuri was developed. The study was conducted from April 2014 to January 2017 at the University Clinic for Ruminants and the Institute of Microbiology at the University of Veterinary Medicine Vienna. Seven hundred twenty-three nasal swabs originating from ruminants and New World camelids with and without clinical signs were examined. After isolation, MRCoNS/MRM were identified by MALDI-TOF, rpoB sequencing and typed by DNA microarray-based analysis and PCR. Antimicrobial susceptibility testing was conducted by agar disk diffusion. From all 723 nasal swabs, 189 MRCoNS/MRM were obtained. Members of the Mammaliicoccus (M.) sciuri group were predominant (M. sciuri (n = 130), followed by M. lentus (n = 43), M. fleurettii (n = 11)). In total, 158 out of 189 isolates showed phenotypically a multi-resistance profile. A seven-loci multi-locus sequence typing scheme for M. sciuri was developed. The scheme includes the analysis of internal segments of the house-keeping genes ack, aroE, ftsZ, glpK, gmk, pta1 and tpiA. In total, 28 different sequence types (STs) were identified among 92 selected M. sciuri isolates. ST1 was the most prevalent ST (n = 35), followed by ST 2 (n = 15), ST3 and ST5 (each n = 5), ST4 (n = 3), ST6, ST7, ST8, ST9, ST10 and ST11 (each n = 2).
  • Item
    Discovery of hemocompatible bacterial biofilm-resistant copolymers
    (Amsterdam [u.a.] : Elsevier Science, 2020) Singh, Taranjit; Hook, Andrew L.; Luckett, Jeni; Maitz, Manfred F.; Sperling, Claudia; Werner, Carsten; Davies, Martyn C.; Irvine, Derek J.; Williams, Paul; Alexander, R.
    Blood-contacting medical devices play an important role within healthcare and are required to be biocompatible, hemocompatible and resistant to microbial colonization. Here we describe a high throughput screen for copolymers with these specific properties. A series of weakly amphiphilic monomers are combinatorially polymerized with acrylate glycol monomers of varying chain lengths to create a library of 645 multi-functional candidate materials containing multiple chemical moieties that impart anti-biofilm, hemo- and immuno-compatible properties. These materials are screened in over 15,000 individual biological assays, targeting two bacterial species, one Gram negative (Pseudomonas aeruginosa) and one Gram positive (Staphylococcus aureus) commonly associated with central venous catheter infections, using 5 different measures of hemocompatibility and 6 measures of immunocompatibililty. Selected copolymers reduce platelet activation, platelet loss and leukocyte activation compared with the standard comparator PTFE as well as reducing bacterial biofilm formation in vitro by more than 82% compared with silicone. Poly(isobornyl acrylate-co-triethylene glycol methacrylate) (75:25) is identified as the optimal material across all these measures reducing P. aeruginosa biofilm formation by up to 86% in vivo in a murine foreign body infection model compared with uncoated silicone. © 2020 The Authors
  • Item
    Building consensus on water use assessment of livestock production systems and supply chains: Outcome and recommendations from the FAO LEAP Partnership
    (Amsterdam [u.a.] : Elsevier Science, 2021) Boulay, Anne-Marie; Drastig, Katrin; Amanullah; Chapagain, Ashok; Charlon, Veronica; Civit, Bárbara; DeCamillis, Camillo; De Souza, Marlos; Hess, Tim; Hoekstra, Arjen Y.; Ibidhi, Ridha; Lathuillière, Michael J.; Manzardo, Alessandro; McAllister, Tim; Morales, Ricardo A.; Motoshita, Masaharu; Palhares, Julio Cesar Pascale; Pirlo, Giacomo; Ridoutt, Brad; Russo, Valentina; Salmoral, Gloria; Singh, Ranvir; Vanham, Davy; Wiedemann, Stephen; Zheng, Weichao; Pfister, Stephan
    The FAO Livestock Environmental Assessment and Performance (LEAP) Partnership organised a Technical Advisory Group (TAG) to develop reference guidelines on water footprinting for livestock production systems and supply chains. The mandate of the TAG was to i) provide recommendations to monitor the environmental performance of feed and livestock supply chains over time so that progress towards improvement targets can be measured, ii) be applicable for feed and water demand of small ruminants, poultry, large ruminants and pig supply chains, iii) build on, and go beyond, the existing FAO LEAP guidelines and iv) pursue alignment with relevant international standards, specifically ISO 14040 (2006)/ISO 14044 (2006), and ISO 14046 (2014). The recommended guidelines on livestock water use address both impact assessment (water scarcity footprint as defined by ISO 14046, 2014) and water productivity (water use efficiency). While most aspects of livestock water use assessment have been proposed or discussed independently elsewhere, the TAG reviewed and connected these concepts and information in relation with each other and made recommendations towards comprehensive assessment of water use in livestock production systems and supply chains. The approaches to assess the quantity of water used for livestock systems are addressed and the specific assessment methods for water productivity and water scarcity are recommended. Water productivity assessment is further advanced by its quantification and reporting with fractions of green and blue water consumed. This allows the assessment of the environmental performance related to water use of a livestock-related system by assessing potential environmental impacts of anthropogenic water consumption (only “blue water”); as well as the assessment of overall water productivity of the system (including “green” and “blue water” consumption). A consistent combination of water productivity and water scarcity footprint metrics provides a complete picture both in terms of potential productivity improvements of the water consumption as well as minimizing potential environmental impacts related to water scarcity. This process resulted for the first time in an international consensus on water use assessment, including both the life-cycle assessment community with the water scarcity footprint and the water management community with water productivity metrics. Despite the main focus on feed and livestock production systems, the outcomes of this LEAP TAG are also applicable to many other agriculture sectors.