Search Results

Now showing 1 - 3 of 3
  • Item
    Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2
    (Melville, NY : AIP Publ., 2023) Tschirner, Teresa; Keßler, Philipp; Gonzalez Betancourt, Ruben Dario; Kotte, Tommy; Kriegner, Dominik; Büchner, Bernd; Dufouleur, Joseph; Kamp, Martin; Jovic, Vedran; Smejkal, Libor; Sinova, Jairo; Claessen, Ralph; Jungwirth, Tomas; Moser, Simon; Reichlova, Helena; Veyrat, Louis
    Observations of the anomalous Hall effect in RuO2 and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe, the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in RuO2 is excluded by symmetry for the Néel vector pointing along the zero-field [001] easy-axis. Guided by a symmetry analysis and ab initio calculations, a field-induced reorientation of the Néel vector from the easy-axis toward the [110] hard-axis was used to demonstrate the anomalous Hall signal in this altermagnet. We confirm the existence of an anomalous Hall effect in our RuO2 thin-film samples, whose set of magnetic and magneto-transport characteristics is consistent with the earlier report. By performing our measurements at extreme magnetic fields up to 68 T, we reach saturation of the anomalous Hall signal at a field Hc ≃ 55 T that was inaccessible in earlier studies but is consistent with the expected Néel-vector reorientation field.
  • Item
    Advances in magneto-ionic materials and perspectives for their application
    (College Park, MD : American Institute of Physics, 2021) Nichterwitz, M.; Honnali Sudheendra, S.; Kutuzau, M.; Guo, S.; Zehner, J.; Nielsch, K.; Leistner, K.
    The possibility of tuning magnetic material properties by ionic means is exciting both for basic science and, especially in view of the excellentenergy efficiency and room temperature operation, for potential applications. In this perspective, we shortly introduce the functionality ofmagneto-ionic materials and focus on important recent advances in this field. We present a comparative overview of state-of-the-art magneto-ionic materials considering the achieved magnetoelectric voltage coefficients for magnetization and coercivity and the demonstrated timescales for magneto-ionic switching. Furthermore, the application perspectives of magneto-ionic materials in data storage and computing,magnetic actuation, and sensing are evaluated. Finally, we propose potential research directions to push this field forward and tackle thechallenges related to future applications
  • Item
    Magnetoelectric materials, phenomena, and devices
    (College Park, MD : American Institute of Physics, 2021) Herrera Diez, L.; Kruk, R.; Leistner, K.; Sort, J.
    [no abstract available]