Search Results

Now showing 1 - 5 of 5
  • Item
    EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength
    (Weinheim : Wiley-VCH, 2020) Hosseini, Kamran; Taubenberger, Anna; Werner, Carsten; Fischer-Friedrich, Elisabeth
    To undergo mitosis successfully, most animal cells need to acquire a round shape to provide space for the mitotic spindle. This mitotic rounding relies on mechanical deformation of surrounding tissue and is driven by forces emanating from actomyosin contractility. Cancer cells are able to maintain successful mitosis in mechanically challenging environments such as the increasingly crowded environment of a growing tumor, thus, suggesting an enhanced ability of mitotic rounding in cancer. Here, it is shown that the epithelial–mesenchymal transition (EMT), a hallmark of cancer progression and metastasis, gives rise to cell-mechanical changes in breast epithelial cells. These changes are opposite in interphase and mitosis and correspond to an enhanced mitotic rounding strength. Furthermore, it is shown that cell-mechanical changes correlate with a strong EMT-induced change in the activity of Rho GTPases RhoA and Rac1. Accordingly, it is found that Rac1 inhibition rescues the EMT-induced cortex-mechanical phenotype. The findings hint at a new role of EMT in successful mitotic rounding and division in mechanically confined environments such as a growing tumor.
  • Item
    Chemokine‐Capturing Wound Contact Layer Rescues Dermal Healing
    (Weinheim : Wiley-VCH, 2021) Schirmer, Lucas; Atallah, Passant; Freudenberg, Uwe; Werner, Carsten
    Excessive inflammation often impedes the healing of chronic wounds. Scavenging of chemokines by multiarmed poly(ethylene glycol)-glycosaminoglycan (starPEG-GAG) hydrogels has recently been shown to support regeneration in a diabetic mouse chronic skin wound model. Herein, a textile-starPEG-GAG composite wound contact layer (WCL) capable of selectively sequestering pro-inflammatory chemokines is reported. Systematic variation of the local and integral charge densities of the starPEG-GAG hydrogel component allows for tailoring its affinity profile for biomolecular signals of the wound milieu. The composite WCL is subsequently tested in a large animal (porcine) model of human wound healing disorders. Dampening excessive inflammatory signals without affecting the levels of pro-regenerative growth factors, the starPEG-GAG hydrogel-based WCL treatment induced healing with increased granulation tissue formation, angiogenesis, and deposition of connective tissue (collagen fibers). Thus, this biomaterials technology expands the scope of a new anti-inflammatory therapy toward clinical use.
  • Item
    Tuning of Smart Multifunctional Polymer Coatings Made by Zwitterionic Phosphorylcholines
    (Weinheim : Wiley-VCH, 2020) Münch, Alexander S.; Adam, Stefan; Fritzsche, Tina; Uhlmann, Petra
    In the last years, the generation of multifunctional coatings has been moved into the focus of interface modifications to expand the spectrum of material applications and to introduce new smart properties. Herein a promising multifunctional and universally usable coating with simultaneous antifouling, easy-to-clean, and anti-fog functionality is presented based on smart polymer films consisting of copolymers with 2-methacryloyloxyethyl phosphorylcholine (MPC), realizing the function of the film and photoreactive 4-benzophenyl methacrylate (BPO), which is responsible for stability and crosslinking. The easy-to-clean effect is demonstrated qualitatively and quantitatively by oil droplet detachment experiments. The antifouling behavior against different germs is investigated by cell adhesion experiments. Furthermore the anti-fog performance is shown by breathing on the surfaces. To study the influence of the different amounts of copolymerized BPO, the grafted films are characterized by atomic force microscopy (AFM), infrared spectroscopy (ATR-FTIR), as well as contact angle measurements. In situ spectroscopic ellipsometry is performed to investigate the swelling behavior of the thin films as a function of the time of UV-irradiation. It is found that a degree of swelling of 15 and a water contact angle of less than 12° are the key parameters necessary for the generation of multifunctional coatings. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Mechanotunable Plasmonic Properties of Colloidal Assemblies
    (Weinheim : Wiley-VCH, 2020) Brasse, Yannic; Gupta, Vaibhav; Schollbach, H.C. Tomohiro; Karg, Matthias; König, Tobias A.F.; Fery, Andreas
    Noble metal nanoparticles can absorb incident light very efficiently due to their ability to support localized surface plasmon resonances (LSPRs), collective oscillations of the free electron cloud. LSPRs lead to strong, nanoscale confinement of electromagnetic energy which facilitates applications in many fields including sensing, photonics, or catalysis. In these applications, damping of the LSPR caused by inter- and intraband transitions is a limiting factor due to the associated energy losses and line broadening. The losses and broad linewidth can be mitigated by arranging the particles into periodic lattices. Recent advances in particle synthesis, (self-)assembly, and fabrication techniques allow for the realization of collective coupling effects building on various particle sizes, geometries, and compositions. Beyond assemblies on static substrates, by assembling or printing on mechanically deformable surfaces a modulation of the lattice periodicity is possible. This enables significant alteration and tuning of the optical properties. This progress report focuses on this novel approach for tunable spectroscopic properties with a particular focus on low-cost and large-area fabrication techniques for functional plasmonic lattices. The report concludes with a discussion of the perspectives for expanding the mechanotunable colloidal concept to responsive structures and flexible devices. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Mesoporous Coatings with Simultaneous Light‐Triggered Transition of Water Imbibition and Droplet Coalescence
    (Weinheim : Wiley-VCH, 2021) Khalil, Adnan; Rostami, Peyman; Auernhammer, Günter K.; Andrieu‐Brunsen, Annette
    A systematic study of gating water infiltration and condensation into ceramic nanopores by carefully adjusting the wetting properties of mesoporous films using photoactive spiropyran is presented. Contact angle measurements from the side reveal significant changes in wettability after irradiation due to spiropyran/merocyanine-isomerization, which induce a wetting transition from dry to wet pores. The change in wettability allows the control of water imbibition in the nanopores and is reflected by the formation of an imbibition ring around a droplet. Furthermore, the photoresponsive wettability is able to overcome pinning effects and cause a movement of a droplet contact line, facilitating droplet coalescence, as recorded by high-speed imaging. The absorbed light not only effectuates droplet merging but also causes flows inside the drop due to heat absorption by the spiropyran, which results in gradients in the surface tension. IR imaging and particle tracking is used to investigate the heat absorption and temperature-induced flows, respectively. These flows can be used to manipulate, for example, molecular movement inside water and deposition inside solid mesoporous materials and are therefore of great importance for nanofluidic devices as well as for future water management concepts, which include filtering by imbibition and collection by droplet coalescence. © 2021 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH