Search Results

Now showing 1 - 10 of 23
  • Item
    Superelasticity of Plasma- and Synthetic Membranes Resulting from Coupling of Membrane Asymmetry, Curvature, and Lipid Sorting
    (Weinheim : Wiley-VCH, 2021) Steinkühler, Jan; Fonda, Piermarco; Bhatia, Tripta; Zhao, Ziliang; Leomil, Fernanda S. C.; Lipowsky, Reinhard; Dimova, Rumiana
    Biological cells are contained by a fluid lipid bilayer (plasma membrane, PM) that allows for large deformations, often exceeding 50% of the apparent initial PM area. Isolated lipids self-organize into membranes, but are prone to rupture at small (<2–4%) area strains, which limits progress for synthetic reconstitution of cellular features. Here, it is shown that by preserving PM structure and composition during isolation from cells, vesicles with cell-like elasticity can be obtained. It is found that these plasma membrane vesicles store significant area in the form of nanotubes in their lumen. These act as lipid reservoirs and are recruited by mechanical tension applied to the outer vesicle membrane. Both in experiment and theory, it is shown that a “superelastic” response emerges from the interplay of lipid domains and membrane curvature. This finding allows for bottom-up engineering of synthetic biomaterials that appear one magnitude softer and with threefold larger deformability than conventional lipid vesicles. These results open a path toward designing superelastic synthetic cells possessing the inherent mechanics of biological cells.
  • Item
    Copper Iodide on Spacer Fabrics as Textile Thermoelectric Device for Energy Generation
    (Basel : MDPI, 2022) Schmidl, Gabriele; Jia, Guobin; Gawlik, Annett; Lorenz, Philipp; Zieger, Gabriel; Dellith, Jan; Diegel, Marco; Plentz, Jonathan
    The integration of electronic functionalities into textiles for use as wearable sensors, energy harvesters, or coolers has become increasingly important in recent years. A special focus is on efficient thermoelectric materials. Copper iodide as a p-type thermoelectrically active, nontoxic material is attractive for energy harvesting and energy generation because of its transparency and possible high-power factor. The deposition of CuI on polyester spacer fabrics by wet chemical processes represents a great potential for use in textile industry for example as flexible thermoelectric energy generators in the leisure or industrial sector as well as in medical technologies. The deposited material on polyester yarn is investigated by electron microscopy, x-ray diffraction and by thermoelectric measurements. The Seebeck coefficient was observed between 112 and 153 µV/K in a temperature range between 30 °C and 90 °C. It is demonstrated that the maximum output power reached 99 nW at temperature difference of 65.5 K with respect to room temperature for a single textile element. However, several elements can be connected in series and the output power can be linear upscaled. Thus, CuI coated on 3D spacer fabrics can be attractive to fabricate thermoelectric devices especially in the lower temperature range for textile medical or leisure applications.
  • Item
    Amorphous Silicon Thin-Film Solar Cells on Fabrics as Large-Scale Detectors for Textile Personal Protective Equipment in Active Laser Safety †
    (Basel : MDPI, 2023) Gawlik, Annett; Brückner, Uwe; Schmidl, Gabriele; Wagner, Volker; Paa, Wolfgang; Plentz, Jonathan
    Laser safety is starting to play an increasingly important role, especially when the laser is used as a tool. Passive laser safety systems quickly reach their limits and, in some cases, provide inadequate protection. To counteract this, various active systems have been developed. Flexible and especially textile-protective materials pose a special challenge. The market still lacks personal protective equipment (PPE) for active laser safety. Covering these materials with solar cells as large-area optical detectors offers a promising possibility. In this work, an active laser protection fabric with amorphous silicon solar cells is presented as a large-scale sensor for continuous wave and pulsed lasers (down to ns). First, the fabric and the solar cells were examined separately for irradiation behavior and damage. Laser irradiation was performed at wavelengths of 245, 355, 532, and 808 nm. The solar cell sensors were then applied directly to the laser protection fabric. The damage and destruction behavior of the active laser protection system was investigated. The results show that the basic safety function of the solar cell is still preserved when the locally damaged or destroyed area is irradiated again. A simple automatic shutdown system was used to demonstrate active laser protection within 50 ms.
  • Item
    Universal Tool for Single-Photon Circuits: Quantum Router Design
    (Basel : MDPI, 2020) Sultanov, Aydar; Greenberg, Yakov; Mutsenik, Evgeniya; Pitsun, Dmitry; Il’ichev, Evgeni
    We demonstrate that the non-Hermitian Hamiltonian approach can be used as a universal tool to design and describe a performance of single photon quantum electrodynamical circuits (cQED). As an example of the validity of this method, we calculate a novel six port quantum router, constructed from four qubits and three open waveguides. We have obtained analytical expressions, which describe the transmission and reflection coefficients of a single photon in general form taking into account the spread qubit’s parameters. We show that, due to naturally derived interferences, in situ tuning the probability of photon detection in desired ports
  • Item
    Aluminum-Doped Zinc Oxide Improved by Silver Nanowires for Flexible, Semitransparent and Conductive Electrodes on Textile with High Temperature Stability
    (Basel : MDPI, 2023) Hupfer, Maximilian Lutz; Gawlik, Annett; Dellith, Jan; Plentz, Jonathan
    In order to facilitate the design freedom for the implementation of textile-integrated electronics, we seek flexible transparent conductive electrodes (TCEs) that can withstand not only the mechanical stresses encountered during use but also the thermal stresses of post-treatment. The transparent conductive oxides (TCO) typically used for this purpose are rigid in comparison to the fibers or textiles they are intended to coat. In this paper, a TCO, specifically aluminum-doped zinc oxide (Al:ZnO), is combined with an underlying layer of silver nanowires (Ag-NW). This combination brings together the advantages of a closed, conductive Al:ZnO layer and a flexible Ag-NW layer, forming a TCE. The result is a transparency of 20–25% (within the 400–800 nm range) and a sheet resistance of 10 Ω/sq that remains almost unchanged, even after post-treatment at 180 °C.
  • Item
    Remineralization of Artificially Demineralized Human Enamel and Dentin Samples by Zinc-Carbonate Hydroxyapatite Nanocrystals
    (Basel : MDPI, 2022) Kranz, Stefan; Heyder, Markus; Mueller, Stephan; Guellmar, André; Krafft, Christoph; Nietzsche, Sandor; Tschirpke, Caroline; Herold, Volker; Sigusch, Bernd; Reise, Markus
    (1) Background: Decalcified enamel and dentin surfaces can be regenerated with non-fluoride-containing biomimetic systems. This study aimed to investigate the effect of a zinc carbonate-hydroxyapatite-containing dentifrice on artificially demineralized enamel and dentin surfaces. (2) Methods: Human enamel and dentin discs were prepared and subjected to surface demineralization with 30% orthophosphoric acid for 60 s. Subsequently, in the test group (n = 20), the discs were treated three times a day for 3 min with a zinc carbonate-hydroxyapatite-containing toothpaste (biorepair®). Afterwards, all samples were gently rinsed with PBS (5 s) and stored in artificial saliva until next use. Samples from the control group (n = 20) received no dentifrice-treatment and were stored in artificial saliva, exclusively. After 15 days of daily treatment, specimens were subjected to Raman spectroscopy, energy-dispersive X-ray micro-analysis (EDX), white-light interferometry, and profilometry. (3) Results: Raman spectroscopy and white-light interferometry revealed no significant differences compared to the untreated controls. EDX analysis showed calcium phosphate and silicon dioxide precipitations on treated dentin samples. In addition, treated dentin surfaces showed significant reduced roughness values. (4) Conclusions: Treatment with biorepair® did not affect enamel surfaces as proposed. Minor mineral precipitation and a reduction in surface roughness were detected among dentin surfaces only.
  • Item
    Liquid-Core Microstructured Polymer Optical Fiber as Fiber-Enhanced Raman Spectroscopy Probe for Glucose Sensing
    (Washington, DC : OSA, 2020) Azkune, Mikel; Frosch, Timea; Arrospide, Eneko; Aldabaldetreku, Gotzon; Bikandi, Iñaki; Zubia, Joseba; Popp, Jürgen; Frosch, Torsten
    This work reports the development and application of two liquid-core microstructured polymer optical fibers (LC-mPOF) with different microstructure sizes. They are used in a fiber-enhanced Raman spectroscopy sensing platform, with the aim of detecting glucose in aqueous solutions in the clinically relevant range for sodium-glucose cotransporter 2 inhibitor therapy. The sensing platform is tested for low-concentration glucose solutions using each LC-mPOF. Results confirm that a significant enhancement of the Raman signal is achieved in comparison to conventional Raman spectroscopy. Additional measurements are carried out to obtain the valid measurement range, the resolution, and the limit of detection, showing that the LC-mPOF with 66-µm-diameter central hollow core has the highest potential for future clinical applications. Finally, preliminary tests successfully demonstrate glucose identification in urine. © 1983-2012 IEEE.
  • Item
    Correction: Design and characterization of a plasmonic Doppler grating for azimuthal angle-resolved surface plasmon resonances
    (Cambridge : RSC Publ., 2021) See, Kel-Meng; Lin, Fan-Cheng; Huang, Jer-Shing
    The authors regret that Fig. 1e of the original paper contained an error in the curves displayed for the silver, aluminium and palladium gratings. Specifically, a different value of the ‘index of the environment’ (1.65) was used in the calculation of these curves compared to that used for calculating the optical response of the gold grating (1.33). The correct Fig. 1 below, displays the curves calculated with the same value of the index of the environment (1.33). No amendments are made to the caption of Fig. 1 or the other sub-figures presented in the figure. This error does not affect any of the results or conclusions reported in the paper; only the display of the figure. (Figure Presented) The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.
  • Item
    2-LED-μspectrophotometer for rapid on-site detection of pathogens using noble-metal nanoparticle-based colorimetric assays
    (Basel : MDPI, 2020) Reuter, Cornelia; Urban, Matthias; Arnold, Manuel; Stranik, Ondrej; Csáki, Andrea; Fritzsche, Wolfgang
    Novel point-of-care compatible methods such as colorimetric assays have become increasingly important in the field of early pathogen detection. A simple and hand-held prototype device for carrying out DNA-amplification assay based on plasmonic nanoparticles in the colorimetric detection is presented. The low-cost device with two channels (sample and reference) consists of two spectrally different light emitting diodes (LEDs) for detection of the plasmon shift. The color change of the gold-nanoparticle-DNA conjugates caused by a salt-induced aggregation test is examined in particular. A specific and sensitive detection of the waterborne human pathogen Legionella pneumophila is demonstrated. This colorimetric assay, with a simple assay design and simple readout device requirements, can be monitored in real-time on-site. © 2020 by the authors.
  • Item
    Characterisation of S. aureus/MRSA CC1153 and review of mobile genetic elements carrying the fusidic acid resistance gene fusC
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Monecke, Stefan; Müller, Elke; Braun, Sascha D.; Armengol-Porta, Marc; Bes, Michèle; Boswihi, Samar; El-Ashker, Maged; Engelmann, Ines; Gawlik, Darius; Gwida, Mayada; Hotzel, Helmut; Nassar, Rania; Reissig, Annett; Ruppelt-Lorz, Antje; Senok, Abiola; Somily, Ali M.; Udo, Edet E.; Ehricht, Ralf
    While many data on molecular epidemiology of MRSA are available for North America, Western Europe and Australia, much less is known on the distribution of MRSA clones elsewhere. Here, we describe a poorly known lineage from the Middle East, CC1153, to which several strains from humans and livestock belong. Isolates were characterised using DNA microarrays and one isolate from the United Arab Emirates was sequenced using Nanopore technology. CC1153 carries agr II and capsule type 5 genes. Enterotoxin genes are rarely present, but PVL is common. Associated spa types include t504, t903 and t13507. PVL-positive CC1153-MSSA were found in Egyptian cattle suffering from mastitis. It was also identified among humans with skin and soft tissue infections in Saudi Arabia, France and Germany. CC1153-MRSA were mainly observed in Arabian Gulf countries. Some isolates presented with a previously unknown SCCmec/SCCfus chimeric element in which a mec B complex was found together with the fusidic acid resistance gene fusC and accompanying genes including ccrA/B-1 recombinase genes. Other isolates carried SCCmec V elements that usually also included fusC. Distribution and emergence of CC1153-MRSA show the necessity of molecular characterization of MRSA that are resistant to fusidic acid. These strains pose a public health threat as they combine resistance to beta-lactams used in hospitals as well as to fusidic acid used in the community. Because of the high prevalence of fusC-positive MRSA in the Middle East, sequences and descriptions of SCC elements harbouring fusC and/or mecA are reviewed. When comparing fusC and its surrounding regions from the CC1153 strain to available published sequences, it became obvious that there are four fusC alleles and five distinct types of fusC gene complexes reminiscent to the mec complexes in SCCmec elements. Likewise, they are associated with different sets of ccrA/B recombinase genes and additional payload that might include entire mec complexes or SCCmec elements.