Search Results

Now showing 1 - 10 of 11
  • Item
    Ablation-dominated arcs in CO2 atmosphere—Part I: Temperature determination near current zero
    (Basel : MDPI, 2020) Methling, Ralf; Khakpour, Alireza; Götte, Nicolas; Uhrlandt, Dirk
    Wall-stabilized arcs dominated by nozzle–ablation are key elements of self-blast circuit breakers. In the present study, high-current arcs were investigated using a model circuit breaker (MCB) in CO2 as a gas alternative to SF6 (gas sulfur hexafluoride) and in addition a long polytetrafluoroethylene nozzle under ambient conditions for stronger ablation. The assets of different methods for optical investigation were demonstrated, e.g., high-speed imaging with channel filters and optical emission spectroscopy. Particularly the phase near current zero (CZ) crossing was studied in two steps. In the first step using high-speed cameras, radial temperature profiles have been determined until 0.4 ms before CZ in the nozzle. Broad temperature profiles with a maximum of 9400 K have been obtained from analysis of fluorine lines. In the second step, the spectroscopic sensitivity was increased using an intensified CCD camera, allowing single-shot measurements until few microseconds before CZ in the MCB. Ionic carbon and atomic oxygen emission were analyzed using absolute intensities and normal maximum. The arc was constricted and the maximum temperature decreased from > 18,000 K at 0.3 ms to about 11,000 K at 0.010 ms before CZ. The arc plasma needs about 0.5–1.0 ms after both the ignition phase and the current zero crossing to be completely dominated by the ablated wall material. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Ablation-dominated arcs in CO2 atmosphere—Part II: Molecule emission and absorption
    (Basel : MDPI, 2020) Methling, Ralf; Götte, Nicolas; Uhrlandt, Dirk
    Molecule radiation can be used as a tool to study colder regions in switching arc plasmas like arc fringes in contact to walls and ranges around current zero (CZ). This is demonstrated in the present study for the first time for the case of ablation-dominated high-current arcs as key elements of self-blast circuit breakers. The arc in a model circuit breaker (MCB) in CO2 with and an arc in a long nozzle under ambient conditions with peak currents between 5 and 10 kA were studied by emission and absorption spectroscopy in the visible spectral range. The nozzle material was polytetrafluoroethylene (PTFE) in both cases. Imaging spectroscopy was carried out either with high-speed cameras or with intensified CCD cameras. A pulsed high-intensity Xe lamp was applied as a background radiator for the broad-band absorption spectroscopy. Emission of Swan bands from carbon dimers was observed at the edge of nozzles only or across the whole nozzle radius with highest intensity in the arc center, depending on current and nozzle geometry. Furthermore, absorption of C2 Swan bands and CuF bands were found with the arc plasma serving as background radiator. After CZ, only CuF was detected in absorption experiments. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Electrical Modelling of Switching Arcs in a Low Voltage Relay at Low Currents
    (Basel : MDPI, 2020) Najam, Ammar; Pieterse, Petrus; Uhrlandt, Dirk
    The arc behaviour of short, low current switching arcs is not well understood and lacks a reliable model. In this work, the behaviour of an arc in the air is studied during contact separation at low DC currents (0.5 A to 20 A) and for small gap lengths (0 mm to 6 mm). The experiments are performed on a low voltage relay with two different electrode configurations. The arc voltage is measured during the opening of the contacts at constant current. The arc length is determined optically by tracing the mean path of the arc over time from a series of high-speed images. From the synchronised data of voltage vs. distance, first a sudden jump of the voltage at the start of contact opening is observed. Secondly, a sudden change in the voltage gradient occurs as the arc is elongated. Short arcs with a length up to approximately 1.25 mm show an intense radiation in the overall gap region and high voltage gradients. An unexpected behaviour never reported before was observed for longer arcs at low current: Two characteristic regions occur, a region in front of the cathode, with a length of approximately 1.25 mm, having an intense radiation and a high voltage gradient as well as a region of much lower radiation intensity and a comparatively lower voltage gradient in the remaining gap area despite a small anode spot region. The characteristic border of approximately 1.25 mm is almost independent of the current. A generalised arc voltage model is proposed based on the assumption that a constant sheath voltage and two discrete field regions exist, which are modelled as two independent linear functions of voltage vs. length. The data for various currents is combined to yield a general non-linear function for predicting the arc voltage vs. arc length and current.
  • Item
    Properties of vacuum arcs generated by switching RMF contacts at different ignition positions
    (Basel : MDPI, 2020) Gortschakow, Sergey; Franke, Steffen; Methling, Ralf; Gonzalez, Diego; Lawall, Andreas; Taylor, Erik D.; Graskowski, Frank
    The influence of initiation behavior of the drawn arc on the arc motion, on arc characteristics during the active phase, as well as on the post-arc parameters, was studied. The study was focused on arc dynamics, determination of the anode surface temperature after current interruption, and diagnostics of metal vapor density after current zero crossing. Different optical diagnostics, namely high-speed camera video enhanced by narrow-band optical filters, near infrared spectroscopy, and optical absorption spectroscopy was applied. The initiation behavior of the drawn arc had a clear influence on arc parameters. Higher local electrode temperature occurs in case of the electrodes with ignition point near the outer electrode boundary. This further causes an enhanced density of chromium vapor, even in cases with lower arc duration. The results of this study are important for design development of switching RMF contacts for future green energy applications. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Optimizing the application of plasma functionalised water (PFW) for microbial safety in fresh-cut endive processing
    (New York, NY [u.a.] : Elsevier Science, 2021) Schnabel, Uta; Balazinski, Martina; Wagner, Robert; Stachowiak, Jörg; Boehm, Daniela; Andrasch, Mathias; Bourke, Paula; Ehlbeck, Jörg
    The microbiological profiles and responses of native microflora of endive were investigated using a model process line, to establish where a defined PFW should be optimally applied to retain or improve produce microbiological quality. The PFW processes were compared with tap water and ClO2. The antimicrobial efficacy of PFW was quantified by determining the reduction in microbial load, the microbial viability and vitality. Depending on the stage of application of PFW, up to 5 log10-cycles reduction was achieved, accompanied by a reduction of metabolic activity, but not necessarily with a decrease in metabolic vitality. Multiple application (3-step-PFW-application) was more effective than single application (1-step-PFW-application) and PFW showed stronger antimicrobial effect in pre-cleaned endive. High concentrations of nitrite (315 mg l−1) and nitrate (472 mg l−1) in PFW were the main factors for the antimicrobial efficacy of PFW against bacteria. Furthermore, H2O2 and an acidic pH supported the mechanism of action against the endive microflora. These results identify the pathway to scale up successful industrial application of PFW targeting microbiological quality and safety of fresh leafy products.Industrial relevance The safety, quality and shelf life of freshly cut vegetables, e.g. lettuce, are strongly influenced by the microbial load. In addition, the hygienic design of production line, and a good handling/ production practice are indispensable. This study shows that the application of PFW, as a promising non-thermal sanitation technology, enables the inactivation of native microbial contamination on fresh-cut endive depending on the process stage of application. It further describes the impact of PFW on the metabolic activity and metabolic vitality of the lettuce-associated microflora. For higher acceptance, the mechanism of action of PFW was assumed based on previous chemical analyses and compared to the industrial standard of ClO2. The results contribute to the understanding and product-specificity of PFW-induced effects on safety, quality and shelf life of fresh cut lettuce and could be a basis for a possible industrial implementation and complement of common technologies.
  • Item
    Terahertz quantum-cascade lasers for high-resolution absorption spectroscopy of atoms and ions in plasmas
    (Bristol : IOP Publ., 2023) Lü, X.; Röben, B.; Biermann, K.; Wubs, J.R.; Macherius, U.; Weltmann, K.-D.; van Helden, J.H.; Schrottke, L.; Grahn, H.T.
    We report on terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures, which exhibit single-mode emission at 3.360, 3.921, and 4.745 THz. These frequencies are in close correspondence to fine-structure transitions of Al atoms, N+ ions, and O atoms, respectively. Due to the low electrical pump power of these THz QCLs, they can be operated in a mechanical cryocooler in continuous-wave mode, while a sufficient intrinsic tuning range of more than 5 GHz is maintained. The single-mode operation and the intrinsic tuning range of these THz QCLs allow for the application of these lasers as radiation sources for high-resolution absorption spectroscopy to determine the absolute densities of Al atoms, N+ ions, and O atoms in plasmas.
  • Item
    Development of a Mobile Sensory Device to Trace Treatment Conditions for Various Medical Plasma Source Devices
    (Basel : MDPI, 2022) Chaerony Siffa, Ihda; Gerling, Torsten; Masur, Kai; Eschenburg, Christian; Starkowski, Frank; Emmert, Steffen
    The emerging use of low-temperature plasma in medicine, especially in wound treatment, calls for a better way of documenting the treatment parameters. This paper describes the development of a mobile sensory device (referred to as MSD) that can be used during the treatment to ease the documentation of important parameters in a streamlined process. These parameters include the patient’s general information, plasma source device used in the treatment, plasma treatment time, ambient humidity and temperature. MSD was developed as a standalone Raspberry Pi-based version and attachable module version for laptops and tablets. Both versions feature a user-friendly GUI, temperature–humidity sensor, microphone, treatment report generation and export. For the logging of plasma treatment time, a sound-based plasma detection system was developed, initially for three medically certified plasma source devices: kINPen® MED, plasma care®, and PlasmaDerm® Flex. Experimental validation of the developed detection system shows accurate and reliable detection is achievable at 5 cm measurement distance in quiet and noisy environments for all devices. All in all, the developed tool is a first step to a more automated, integrated, and streamlined approach of plasma treatment documentation that can help prevent user variability.
  • Item
    Development of an electrochemical sensor for in-situ monitoring of reactive species produced by cold physical plasma
    (Amsterdam [u.a.] : Elsevier Science, 2021) Nasri, Zahra; Bruno, Giuliana; Bekeschus, Sander; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Wende, Kristian
    The extent of clinical applications of oxidative stress-based therapies such as photodynamic therapy (PDT) or respiratory chain disruptors are increasing rapidly, with cold physical plasma (CPP) emerging as a further option. According to the current knowledge, the biological effects of CPP base on reactive oxygen and nitrogen species (RONS) relevant in cell signaling. To monitor the safety and the biological impact of the CPP, determining the local generation of RONS in the same environment in which they are going to be applied is desirable. Here, for the first time, the development of an electrochemical sensor for the simple, quick, and parallel determination of plasma-generated reactive species is described. The proposed sensor consists of a toluidine blue redox system that is covalently attached to a gold electrode surface. By recording chronoamperometry at different potentials, it is possible to follow the in-situ production of the main long-lived reactive oxygen and nitrogen species like hydrogen peroxide, nitrite, hypochlorite, and chloramine with time. The applicability of this electrochemical sensor for the in-situ assessment of reactive species in redox-based therapies is demonstrated by the precise analysis of hydrogen peroxide dynamics in the presence of blood cancer cells.
  • Item
    Low-Cost Laser-Acoustic PVC Identification System Based on a Simple Neural Network
    (Basel : MDPI, 2022) Timmermann, Eric; Geißler, Philip; Bansemer, Robert
    Desktop laser cutters are an affordable and flexible rapid-prototyping tool, but some materials cannot be safely processed. Among them is polyvinyl chloride (PVC), which users usually cannot distinguish from other, unproblematic plastics. Therefore, an identification system for PVC applicable in a low-cost laser cutter has been developed. For the first time, this approach makes use of the laser-ablative sound generated by a low-power laser diode. Using a capacitor microphone, a preprocessing algorithm and a very simple neural network, black PVC could be detected with absolute reliability under ideal conditions. With ambient noise, the accuracy dropped to 80%. A different color of the material did not influence the accuracy to detect PVC, but a susceptibility of the method against a color change was found for other materials. The ablation characteristics for different materials were recorded using a fast-framing camera to get a better insight into the mechanisms behind the investigated process. Although there is still potential for improvements, the presented method was found to be promising to enhance the safety of future desktop laser cutters.
  • Item
    Thermal protection implementation of the contact overheadline based on bay controllers of electric transport traction substations in the mining industry
    (Sankt-Peterburg : Inst., 2021) Lantsev, Dmitry; Frolov, Vladimir; Zverev, Sergej; Uhrlandt, Dirk; Valenta, Jiří
    The article presents the principle of thermal protection of the contact overheadlineand substantiates the possibility of practical implementation of this principle for rail electric transport in the mining industry. The algorithm for the implementation of modern digital protection of the contact overhead line as one of the functions of the controller is described. A mathematical model of thermal protection is proposed, which follows from the solution of the heat balance equation. The model takes into account the coefficient of the electrical networktopology, as well as the coefficient of consumption of the current-carrying core of the cable, which determines the reduction in the conducting section from contact erosion and the growth of oxide films. Corrections for air flows are introduced when receiving data from an external anemometer, via telemechanics protocol. The mathematical model was tested by writing a real thermal protection program in the C programming language for the bay controller, based on the circuitry of which is the STM32F407IGT6 microcontroller for the microcontroller unit. Verification tests were carried out on a serial bay controller in 2020. The graphs for comparing the calculated and actual values of temperatures, with different flow rates of the current-carrying conductor of the DC cable, are given. To obtain data, telemechanics protocols IEC 60870-104 and Modbus TCP, PLC Segnetics SMH4 were used.