Search Results

Now showing 1 - 2 of 2
  • Item
    Mixed Carbon Nanomaterial/Epoxy Resin for Electrically Conductive Adhesives
    (Basel : MDPI, 2020) Lopes, Paulo E.; Moura, Duarte; Hilliou, Loic; Krause, Beate; Pötschke, Petra; Figueiredo, Hugo; Alves, Ricardo; Lepleux, Emmanuel; Pacheco, Louis; Paiva, Maria C.
    The increasing complexity of printed circuit boards (PCBs) due to miniaturization, increased the density of electronic components, and demanding thermal management during the assembly triggered the research of innovative solder pastes and electrically conductive adhesives (ECAs). Current commercial ECAs are typically based on epoxy matrices with a high load (>60%) of silver particles, generally in the form of microflakes. The present work reports the production of ECAs based on epoxy/carbon nanomaterials using carbon nanotubes (single and multi-walled) and exfoliated graphite, as well as hybrid compositions, within a range of concentrations. The composites were tested for morphology (dispersion of the conductive nanomaterials), electrical and thermal conductivity, rheological characteristics and deposition on a test PCB. Finally, the ECA’s shelf life was assessed by mixing all the components and conductive nanomaterials, and evaluating the cure of the resin before and after freezing for a time range up to nine months. The ECAs produced could be stored at −18 °C without affecting the cure reaction.
  • Item
    Degradation analysis of tribologically loaded carbon nanotubes and carbon onions
    ([London] : Macmillan Publishers Limited, 2023) MacLucas, T.; Grützmacher, P.; Husmann, S.; Schmauch, J.; Keskin, S.; Suarez, S.; Presser, V.; Gachot, C.; Mücklich, F.
    Coating laser-patterned stainless-steel surfaces with carbon nanotubes (CNT) or carbon onions (CO) forms a tribological system that provides effective solid lubrication. Lubricant retention represents the fundamental mechanism of this system, as storing the particles inside the pattern prevents lubricant depletion in the contact area. In previous works, we used direct laser interference patterning to create line patterns with three different structural depths on AISI 304 stainless-steel platelets. Electrophoretic deposition subsequently coated the patterned surfaces with either CNTs or COs. Ball-on-disc friction tests were conducted to study the effect of structural depth on the solid lubricity of as-described surfaces. The results demonstrated that the shallower the textures, the lower the coefficient of friction, regardless of the applied particle type. This follow-up study examines the carbon nanoparticles’ structural degradation after friction testing on substrates patterned with different structural depths (0.24, 0.36, and 0.77 µm). Raman characterization shows severe degradation of both particle types and is used to classify their degradation state within Ferrari’s three-stage amorphization model. It was further shown that improving CNT lubricity translates into increasing particle defectivity. This is confirmed by electron microscopy, which shows decreasing crystalline domains. Compared to CNTs, CO-derived tribofilms show even more substantial structural degradation.