Search Results

Now showing 1 - 10 of 14
Loading...
Thumbnail Image
Item

Shape-Memory Metallopolymers Based on Two Orthogonal Metal–Ligand Interactions

2021, Meurer, Josefine, Hniopek, Julian, Bätz, Thomas, Zechel, Stefan, Enke, Marcel, Vitz, Jürgen, Schmitt, Michael, Popp, Jürgen, Hager, Martin D., Schubert, Ulrich S.

A new shape-memory polymer is presented, in which both the stable phase as well as the switching unit consist of two different metal complexes. Suitable metal ions, which simultaneously form labile complexes with histidine and stable ones with terpyridine ligands, are identified via isothermal titration calorimetry (ITC) measurements. Different copolymers are synthesized, which contain butyl methacrylate as the main monomer and the metal-binding ligands in the side chains. Zn(TFMS)2 and NiCl2 are utilized for the dual crosslinking, resulting in the formation of metallopolymer networks. The switching temperature can simply be tuned by changing the composition as well as by the choice of the metal ion. Strain fixity rates (about 99%) and very high strain recovery rates (up to 95%) are achieved and the mechanism is revealed using different techniques such as Raman spectroscopy. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Quinoline Photobasicity: Investigation within Water-Soluble Light-Responsive Copolymers

2021, Sittig, Maria, Tom, Jessica C., Elter, Johanna K., Schacher, Felix H., Dietzek, Benjamin

Quinoline photobases exhibit a distinctly higher pKa in their electronically excited state than in the ground state, thereby enabling light-controlled proton transfer reactions, for example, in molecular catalysis. The absorption of UV light translates to a pKa jump of approximately 10 units, as established for small-molecule photobases. This contribution presents the first synthesis of quinoline-based polymeric photobases prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization. The integration of quinolines as photobase chromophores within copolymers offers new possibilities for light-triggered proton transfer in nanostructured materials, that is, in nanoparticles, at surfaces, membranes and interfaces. To exploit the light-triggered reactivity of photobases within such materials, we first investigated how the ground- and excited-state properties of the quinoline unit changes upon polymer integration. To address this matter, we combined absorption and emission spectroscopy with time-resolved transient-absorption studies to reveal photoinduced proton-transfer dynamics in various solvents. The results yield important insights into the thermodynamic and kinetic properties of these polymeric quinoline photobases. © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Microwave-Assisted Synthesis of Core–Shell Nanoparticles—Insights into the Growth of Different Geometries

2020, Womiloju, Aisha A., Höppener, Christiane, Schubert, Ulrich S., Hoeppener, Stephanie

Microwave irradiation is utilized for the rapid synthesis of gold–silver core–shell bimetallic nanoparticles (NPs) in a two-step process. A strategy of establishing a bilayer organic barrier around the core using citrate and ascorbic acid as capping agents, providing a means to achieve a well-defined boundary layer between the core and the shell material, is reported. These boundary layers are essential for synthesizing different core–shell morphologies and the approach results in tunable bimetallic NPs with defined core–shell structures, both for spherical as well as for triangular seed cores. In addition, theoretical calculations of the plasmonic characteristics based on the boundary element method of different classes of NPs are conducted. These investigations enable conclusions to be drawn on the influence of the core morphology on the tunability of their localized surface plasmon resonances. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Comparative Analysis of Raman Signal Amplifying Effectiveness of Silver Nanostructures with Different Morphology

2022, Yakimchuk, Dzmitry V., Khubezhov, Soslan A., Prigodich, Uladzislau V., Tishkevich, Daria I., Trukhanov, Sergei V., Trukhanov, Alex V., Sivakov, Vladimir, Kaniukov, Egor Y.

To increase the attractiveness of the practical application of molecular sensing methods, the experimental search for the optimal shape of silver nanostructures allowing to increase the Raman cross section by several orders of magnitude is of great interest. This paper presents a detailed study of spatially separated plasmon-active silver nanostructures grown in SiO2/Si template pores with crystallite, dendrite, and “sunflower-like” nanostructures shapes. Nile blue and 2-mercaptobenzothiazole were chosen as the model analytes for comparative evaluation of the Raman signal amplification efficiency using these structures. It was discussed the features of the structures for the enhancement of Raman intensity. Finally, we showed that silver crystals, dendrites, and “sunflower-like” nanostructures in SiO2/Si template could be used as the relevant materials for Raman signal amplification, but with different efficiency.

Loading...
Thumbnail Image
Item

Intracellular Photophysics of an Osmium Complex bearing an Oligothiophene Extended Ligand

2020, Schneider, Kilian R.A., Chettri, Avinash, Cole, Houston D., Reglinski, Katharina, Breckmann, Jannik, Roque, John A. III, Stumper, Anne, Nauroozi, Djawed, Schmid, Sylvia, Lagerholm, Christoffer B., Rau, Sven, Bäuerle, Peter, Eggeling, Christian, Cameron, Colin G., McFarland, Sherri A., Dietzek, Benjamin

This contribution describes the excited-state properties of an Osmium-complex when taken up into human cells. The complex 1 [Os(bpy)2(IP-4T)](PF6)2 with bpy=2,2′-bipyridine and IP-4T=2-{5′-[3′,4′-diethyl-(2,2′-bithien-5-yl)]-3,4-diethyl-2,2′-bithiophene}imidazo[4,5-f][1,10]phenanthroline) can be discussed as a candidate for photodynamic therapy in the biological red/NIR window. The complex is taken up by MCF7 cells and localizes rather homogeneously within in the cytoplasm. To detail the sub-ns photophysics of 1, comparative transient absorption measurements were carried out in different solvents to derive a model of the photoinduced processes. Key to rationalize the excited-state relaxation is a long-lived 3ILCT state associated with the oligothiophene chain. This model was then tested with the complex internalized into MCF7 cells, since the intracellular environment has long been suspected to take big influence on the excited state properties. In our study of 1 in cells, we were able to show that, though the overall model remained the same, the excited-state dynamics are affected strongly by the intracellular environment. Our study represents the first in depth correlation towards ex-vivo and in vivo ultrafast spectroscopy for a possible photodrug. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Photophysics of Anionic Bis(4H-imidazolato)CuI Complexes

2022, Seidler, Bianca, Tran, Jens H., Hniopek, Julian, Traber, Philipp, Görls, Helmar, Gräfe, Stefanie, Schmitt, Michael, Popp, Jürgen, Schulz, Martin, Dietzek‐Ivanšić, Benjamin

In this paper, the photophysical behavior of four panchromatically absorbing, homoleptic bis(4H-imidazolato)CuI complexes, with a systematic variation in the electron-withdrawing properties of the imidazolate ligand, were studied by wavelength-dependent time-resolved femtosecond transient absorption spectroscopy. Excitation at 400, 480, and 630 nm populates metal-to-ligand charge transfer, intraligand charge transfer, and mixed-character singlet states. The pump wavelength-dependent transient absorption data were analyzed by a recently established 2D correlation approach. Data analysis revealed that all excitation conditions yield similar excited-state dynamics. Key to the excited-state relaxation is fast, sub-picosecond pseudo-Jahn-Teller distortion, which is accompanied by the relocalization of electron density onto a single ligand from the initially delocalized state at Franck-Condon geometry. Subsequent intersystem crossing to the triplet manifold is followed by a sub-100 ps decay to the ground state. The fast, nonradiative decay is rationalized by the low triplet-state energy as found by DFT calculations, which suggest perspective treatment at the strong coupling limit of the energy gap law.

Loading...
Thumbnail Image
Item

Non-invasive prospection techniques and direct push sensing as high-resolution validation tools in wetland geoarchaeology – Artificial water supply at a Carolingian canal in South Germany?

2020, Rabiger-Völlmer, Johannes, Schmidt, Johannes, Linzen, Sven, Schneider, Michael, Werban, Ulrike, Dietrich, Peter, Wilken, Dennis, Wunderlich, Tina, Fediuk, Annika, Berg, Stefanie, Werther, Lukas, Zielhofer, Christoph

The prospection of (geo-)archaeological sites yield important knowledge about the concept and the utilisation of pre-historical and historical infrastructure. The satisfactory conduction of classical prospection methods like archaeological excavations or geoarchaeological vibra-coring might be challenging in the case of large sites or difficult underground conditions. This is particularly problematic in wetlands featuring a high groundwater table and high compaction rates of organic layers. In this study, we provide an alternative and non- to minimal-invasive exploration approach to discover hydro-engineering structures for artificial water supply in the surrounding of a Carolingian summit canal in South Germany. The Early Medieval Fossa Carolina was intended 792/793 CE to bridge the Central European watershed between Rhine-Main and Danube catchments. As the canal was constructed as a summit canal, an artificial water supply at the highest levels seemed very likely or even obligatory. In order to explore these obligatory hydro-engineering features, we use a wide range of on-site and off-site tools in a spatial hierarchical way. Our approach includes the large-scale SQUID magnetic survey and the sighting of historical maps. Furthermore, we integrate high-resolution direct push colour logs, and subsequent vibra-coring for small-scale stratigraphical verification and sedimentological analyses. The SQUID magnetic survey and related depth models discover two pronounced linear anomalies that might represent potential artificial water inlets in the North-Eastern and Northern Sections of the canal. I) In the North-Eastern Section, direct push colour logs, vibra-coring and 14C dating provide no evidence for a Carolingian hydro-engineering feature but reveal a natural lenticular structure of Early Holocene age. II) The linear magnetic anomaly in the Northern Section can be excluded with high probability as a hydro-engineering structure as well. Here, direct push colour logs, vibra-coring, 14C dating and the comparison with a historic map reveal evidence for a historic gravel road. Thus, we have nicely verified the magnetic information but have no prove for an artificial Carolingian water inlet from the Swabian Rezat River that contradicts with assumptions of former studies. © 2020 The Authors

Loading...
Thumbnail Image
Item

Yield—not only Lifetime—of the Photoinduced Charge-Separated State in Iridium Complex–Polyoxometalate Dyads Impact Their Hydrogen Evolution Reactivity

2020, Luo, Yusen, Maloul, Salam, Schönweiz, Stefanie, Wächtler, Maria, Streb, Carsten, Dietzek, Benjamin

Covalently linked photosensitizer–polyoxometalate (PS-POM) dyads are promising molecular systems for light-induced energy conversion processes, such as “solar” hydrogen generation. To date, very little is known of their fundamental photophysical properties which affect the catalytic reactivity and stability of the systems. PS-POM dyads often feature short-lived photoinduced charge-separated states, and the lifetimes of these states are considered crucial for the function of PS-POM dyads in molecular photocatalysis. Hence, strategies have been developed to extend the lifetimes of the photoinduced charge-separated states, either by tuning the PS photophysics or by tuning the POM redox properties. Recently, some of us reported PS-POM dyads based on cyclometalated IrIII complexes covalently linked to Anderson-type polyoxometalate. Distinct hydrogen evolution reactivity (HER) of the dyads was observed, which was tuned by varying the central metal ion M of the POMM (M=Mn3+, Co3+, Fe3+). In this manuscript, the photoinduced electron-transfer processes in the three Ir-POMM dyads are investigated to rationalize the underlying reasons for the differences in HER activity observed. We report that upon excitation of the IrIII complex, ultrafast (sub-ps) charge separation occurs, leading to different amounts of the charge-separated states (Ir.+-POMM.−) generated in the different dyads. However, in all dyads studied, the resulting Ir.+-POMM.− species are short-lived (sub-ns) when compared to reference electron acceptors (e.g. porphyrins or fullerenes) reported in the literature. The reductive quenching of Ir.+-POMM.− by a sacrificial donor, triethyl amine (1 m), to generate the intermediate Ir-POMM.− is estimated to be very efficient (70–80 %) for all dyads studied. Based on this analyses, we conclude that the yield instead of the lifetime of the Ir.+-POMM.− charge-separated state determines the catalytic capacity of the dyads investigated. This new feature in the PS-POM photophysics could lead to new design criteria for the development of novel PS-POM dyads. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

1,7,9,10-Tetrasubstituted PMIs Accessible through Decarboxylative Bromination: Synthesis, Characterization, Photophysical Studies, and Hydrogen Evolution Catalysis

2020, Costabel, Daniel, Skabeev, Artem, Nabiyan, Afshin, Luo, Yusen, Max, Johannes B., Rajagopal, Ashwene, Kowalczyk, Daniel, Dietzek, Benjamin, Wächtler, Maria, Görls, Helmar, Ziegenbalg, Dirk, Zagranyarski, Yulian, Streb, Carsten, Schacher, Felix H., Peneva, Kalina

In this work, we present a new synthetic strategy for fourfold-substituted perylene monoimides via tetrabrominated perylene monoanhydrides. X-ray diffraction analysis unveiled the intramolecular stacking orientation between the substituents and semicircular packing behavior. We observed the remarkable influence of the substituent on the longevity and nature of the excited state upon visible light excitation. In the presence of poly(dehydroalanine)-graft-poly(ethylene glycol) graft copolymers as solubilizing template, the chromophores are capable of sensitizing [Mo3S13]2− clusters in aqueous solution for stable visible light driven hydrogen evolution over three days. © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Comparison of novel semi-airborne electromagnetic data with multi-scale geophysical, petrophysical and geological data from Schleiz, Germany

2020, Steuer, Annika, Smirnova, Maria, Becken, Michael, Schiffler, Markus, Günther, Thomas, Rochlitz, Raphael, Yogeshwar, Pritam, Mörbe, Wiebke, Siemon, Bernhard, Costabel, Stephan, Preugschat, Benedikt, Ibs-von Seht, Malte, Zampa, Luigi Sante, Müller, Franz

In the framework of the Deep Electromagnetic Sounding for Mineral EXploration (DESMEX) project, we carried out multiple geophysical surveys from regional to local scales in a former mining area in the state of Thuringia, Germany. We prove the applicability of newly developed semi-airborne electromagnetic (EM) systems for mineral exploration by cross-validating inversion results with those of established airborne and ground-based investigation techniques. In addition, supporting petrophysical and geological information to our geophysical measurements allowed the synthesis of all datasets over multiple scales. An initial regional-scale reconnaissance survey was performed with BGR's standard helicopter-borne geophysical system deployed with frequency-domain electromagnetic (HEM), magnetic and radiometric sensors. In addition to geological considerations, the HEM results served as base-line information for the selection of an optimal location for the intermediate-scale semi-airborne EM experiments. The semi-airborne surveys utilized long grounded transmitters and two independent airborne receiver instruments: induction coil magnetometers and SQUID sensors. Due to the limited investigation depth of the HEM method, local-scale electrical resistivity tomography (ERT) and long-offset transient electromagnetic (LOTEM) measurements were carried out on a reference profile, enabling the validation of inversion results at greater depths. The comparison of all inversion results provided a consistent overall resistivity distribution. It further confirmed that both semi-airborne receiver instruments achieve the bandwidth and sensitivity required for the investigation of the resistivity structure down to 1 km depth and therewith the detection of deeply seated earth resources. A 3D geological model, lithological and geophysical borehole logs as well as petrophysical investigations were integrated to interpret of the geophysical results. Distinct highly-conductive anomalies with resistivities of less than 10 Om were identified as alum shales over all scales. Apart from that, the petrophysical investigations exhibited that correlating geophysical and geological information using only one single parameter, such as the electrical resistivity, is hardly possible. Therefore, we developed a first approach based on clustering methods and self-organizing maps (SOMs) that allowed us to assign geological units at the surface to a given combination of geophysical and petrophysical parameters, obtained on different scales. © 2020 The Authors