Search Results

Now showing 1 - 3 of 3
  • Item
    A discussion of the cell voltage during discharge of an intercalation electrode for various C-rates based on non-equilibrium thermodynamics and numerical simulations
    (Bristol : IOP Publishing, 2020) Landstorfer, Manuel
    In this work we discuss the modeling procedure and validation of a non-porous intercalation half-cell during galvanostatic discharge. The modeling is based on continuum thermodynamics with non-equilibrium processes in the active intercalation particle, the electrolyte, and the common interface where the intercalation reaction Li+ + e- ↔ Li occurs. The model is in detail investigated and discussed in terms of scalings of the non-equilibrium parameters, i.e. the diffusion coefficients DA and DE of the active phase and the electrolyte, conductivity sA and sE of both phases, and the exchange current density e0L, with numerical solutions of the underlying PDE system. The current density i as well as all non-equilibrium parameters are scaled s with respect to the 1-C current density iC A of the intercalation electrode. We compute then numerically the cell voltage E as function of the capacity Q and the C-rate Ch. Within a hierarchy of approximations we provide computations of E(Q) for various scalings of the diffusion coefficients, the conductivities and the exchange current density. For the later we provide finally a discussion for possible concentration dependencies. © The Author(s) 2019. Published by ECS.
  • Item
    Modeling Polycrystalline Electrode-electrolyte Interfaces: The Differential Capacitance
    (Bristol : IOP Publishing, 2020) Müller, Rüdiger; Fuhrmann, Jürgen; Landstorfer, Manuel
    We present and analyze a model for polycrystalline electrode surfaces based on an improved continuum model that takes finite ion size and solvation into account. The numerical simulation of finite size facet patterns allows to study two limiting cases: While for facet size diameter dfacet →0 we get the typical capacitance of a spatially homogeneous but possible amorphous or liquid surface, in the limit 1[nm] < dfacet, an ensemble of non-interacting single crystal surfaces is approached. Already for moderate size of the facet diameters, the capacitance is remarkably well approximated by the classical approach of adding the single crystal capacities of the contributing facets weighted by their respective surface fraction. As a consequence, the potential of zero charge is not necessarily attained at a local minimum of capacitance, but might be located at a local capacitance maximum instead. Moreover, the results show that surface roughness can be accurately taken into account by multiplication of the ideally flat polycrystalline surface capacitance with a single factor. In particular, we find that the influence of the actual geometry of the facet pattern in negligible and our theory opens the way to a stochastic description of complex real polycrystal surfaces. © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
  • Item
    Semi-Interpenetrating Polymer Networks Based on N-isopropylacrylamide and 2-acrylamido-2-methylpropane Sulfonic Acid for Intramolecular Force-Compensated Sensors
    (Bristol : IOP Publishing, 2021) Binder, Simon; Zschoche, Stefan; Voit, Brigitte; Gerlach, Gerald
    Stimulus-responsive hydrogels are swellable polymers that take up a specific volume depending on a measured variable present in solution. Hydrogel-based chemical sensors make use of this ability by converting the resulting swelling pressure, which depends on the measured variable, into an electrical value. Due to the tedious swelling processes, the measuring method of intramolecular force compensation is used to suppress these swelling processes and, thus, significantly increase the sensor's response time. However, intramolecular force compensation requires a bisensitive hydrogel. In addition to the sensitivity of the measured variable the gel has to provide a second sensitivity for intrinsic compensation of the swelling pressure. At the same time, this hydrogel has to meet further requirements, e.g. high compressive strength. Until now, interpenetrating polymer networks (IPN) have been used for such a force-compensatory effective hydrogel, which are complex to manufacture. In order to significantly simplify the sensor design and production, a simpler synthesis of the bisensitive hydrogel is desirable. This paper presents a new bisensitive hydrogel based on semi-interpenetrating polymer networks. It is based on a copolymer network consisting of N-isopropylacrylamide (NiPAAm) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and long PAMPS strands that permeate it. Measurements show, that this hydrogel meets all essential requirements for intramolecular force compensation and is at the same time much easier to synthesize than previously used IPN hydrogels. © 2021 The Author(s).