Search Results

Now showing 1 - 10 of 37
  • Item
    Description and evaluation of the process-based forest model 4C v2.2 at four European forest sites
    (Katlenburg-Lindau : Copernicus, 2020) Lasch-Born, Petra; Suckow, Felicitas; Reyer, Christopher P. O.; Gutsch, Martin; Kollas, Chris; Badeck, Franz-Werner; Bugmann, Harald K. M.; Grote, Rüdiger; Fürstenau, Cornelia; Lindner, Marcus; Schaber, Jörg
    The process-based model 4C (FORESEE) has been developed over the past 20 years to study climate impacts on forests and is now freely available as an open-source tool. The objective of this paper is to provide a comprehensive description of this 4C version (v2.2) for scientific users of the model and to present an evaluation of 4C at four different forest sites across Europe. The evaluation focuses on forest growth as well as carbon (net ecosystem exchange, gross primary production), water (actual evapotranspiration, soil water content), and heat fluxes (soil temperature) using data from the PROFOUND database. We applied different evaluation metrics and compared the daily, monthly, and annual variability of observed and simulated values. The ability to reproduce forest growth (stem diameter and biomass) differs from site to site and is best for a pine stand in Germany (Peitz, model efficiency ME=0.98). 4C is able to reproduce soil temperature at different depths in Sorø and Hyytiälä with good accuracy (for all soil depths ME > 0.8). The dynamics in simulating carbon and water fluxes are well captured on daily and monthly timescales (0.51 < ME < 0.983) but less so on an annual timescale (ME < 0). This model–data mismatch is possibly due to the accumulation of errors because of processes that are missing or represented in a very general way in 4C but not with enough specific detail to cover strong, site-specific dependencies such as ground vegetation growth. These processes need to be further elaborated to improve the projections of climate change on forests. We conclude that, despite shortcomings, 4C is widely applicable, reliable, and therefore ready to be released to the scientific community to use and further develop the model.
  • Item
    Drivers of Pine Island Glacier speed-up between 1996 and 2016
    (Katlenburg-Lindau : Copernicus, 2021-1-7) De Rydt, Jan; Reese, Ronja; Paolo, Fernando S.; Gudmundsson, G. Hilmar
    Pine Island Glacier in West Antarctica is among the fastest changing glaciers worldwide. Over the last 2 decades, the glacier has lost in excess of a trillion tons of ice, or the equivalent of 3 mm of sea level rise. The ongoing changes are thought to have been triggered by ocean-induced thinning of its floating ice shelf, grounding line retreat, and the associated reduction in buttressing forces. However, other drivers of change, such as large-scale calving and changes in ice rheology and basal slipperiness, could play a vital, yet unquantified, role in controlling the ongoing and future evolution of the glacier. In addition, recent studies have shown that mechanical properties of the bed are key to explaining the observed speed-up. Here we used a combination of the latest remote sensing datasets between 1996 and 2016, data assimilation tools, and numerical perturbation experiments to quantify the relative importance of all processes in driving the recent changes in Pine Island Glacier dynamics. We show that (1) calving and ice shelf thinning have caused a comparable reduction in ice shelf buttressing over the past 2 decades; that (2) simulated changes in ice flow over a viscously deforming bed are only compatible with observations if large and widespread changes in ice viscosity and/or basal slipperiness are taken into account; and that (3) a spatially varying, predominantly plastic bed rheology can closely reproduce observed changes in flow without marked variations in ice-internal and basal properties. Our results demonstrate that, in addition to its evolving ice thickness, calving processes and a heterogeneous bed rheology play a key role in the contemporary evolution of Pine Island Glacier.
  • Item
    Timescales of outlet-glacier flow with negligible basal friction: Theory, observations and modeling
    (Katlenburg-Lindau : Copernicus, 2023) Feldmann, Johannes; Levermann, Anders
    The timescales of the flow and retreat of Greenland's and Antarctica's outlet glaciers and their potential instabilities are arguably the largest uncertainty in future sea-level projections. Here we derive a scaling relation that allows the comparison of the timescales of observed complex ice flow fields with geometric similarity. The scaling relation is derived under the assumption of fast, laterally confined, geometrically similar outlet-glacier flow over a slippery bed, i.e., with negligible basal friction. According to the relation, the time scaling of the outlet flow is determined by the product of the inverse of (1) the fourth power of the width-To-length ratio of its confinement, (2) the third power of the confinement depth and (3) the temperature-dependent ice softness. For the outflow at the grounding line of streams with negligible basal friction, this means that the volume flux is proportional to the ice softness and the bed depth, but goes with the fourth power of the gradient of the bed and with the fifth power of the width of the stream. We show that the theoretically derived scaling relation is supported by the observed velocity scaling of outlet glaciers across Greenland as well as by idealized numerical simulations of marine ice-sheet instabilities (MISIs) as found in Antarctica. Assuming that changes in the ice-flow velocity due to ice-dynamic imbalance are proportional to the equilibrium velocity, we combine the scaling relation with a statistical analysis of the topography of 13 MISI-prone Antarctic outlets. Under these assumptions, the timescales in response to a potential destabilization are fastest for Thwaites Glacier in West Antarctica and Mellor, Ninnis and Cook Glaciers in East Antarctica; between 16 and 67 times faster than for Pine Island Glacier. While the applicability of our results is limited by several strong assumptions, the utilization and potential further development of the presented scaling approach may help to constrain timescale estimates of outlet-glacier flow, augmenting the commonly exploited and comparatively computationally expensive approach of numerical modeling.
  • Item
    Potential yield simulated by global gridded crop models: using a process-based emulator to explain their differences
    (Katlenburg-Lindau : Copernicus, 2021-3-23) Ringeval, Bruno; Müller, Christoph; Pugh, Thomas A. M.; Mueller, Nathaniel D.; Ciais, Philippe; Folberth, Christian; Liu, Wenfeng; Debaeke, Philippe; Pellerin, Sylvain
    How global gridded crop models (GGCMs) differ in their simulation of potential yield and reasons for those differences have never been assessed. The GGCM Intercomparison (GGCMI) offers a good framework for this assessment. Here, we built an emulator (called SMM for simple mechanistic model) of GGCMs based on generic and simplified formalism. The SMM equations describe crop phenology by a sum of growing degree days, canopy radiation absorption by the Beer–Lambert law, and its conversion into aboveground biomass by a radiation use efficiency (RUE). We fitted the parameters of this emulator against gridded aboveground maize biomass at the end of the growing season simulated by eight different GGCMs in a given year (2000). Our assumption is that the simple set of equations of SMM, after calibration, could reproduce the response of most GGCMs so that differences between GGCMs can be attributed to the parameters related to processes captured by the emulator. Despite huge differences between GGCMs, we show that if we fit both a parameter describing the thermal requirement for leaf emergence by adjusting its value to each grid-point in space, as done by GGCM modellers following the GGCMI protocol, and a GGCM-dependent globally uniform RUE, then the simple set of equations of the SMM emulator is sufficient to reproduce the spatial distribution of the original aboveground biomass simulated by most GGCMs. The grain filling is simulated in SMM by considering a fixed-in-time fraction of net primary productivity allocated to the grains (frac) once a threshold in leaves number (nthresh) is reached. Once calibrated, these two parameters allow for the capture of the relationship between potential yield and final aboveground biomass of each GGCM. It is particularly important as the divergence among GGCMs is larger for yield than for aboveground biomass. Thus, we showed that the divergence between GGCMs can be summarized by the differences in a few parameters. Our simple but mechanistic model could also be an interesting tool to test new developments in order to improve the simulation of potential yield at the global scale.
  • Item
    Patterns in Mongolian nomadic household movement derived from GPS trajectories
    (New York, NY [u.a.] : Elsevier, 2020) Teickner, Henning; Knoth, Christian; Bartoschek, Thomas; Kraehnert, Kati; Vigh, Melinda; Purevtseren, Myagmartseren; Sugar, Munkhnaran; Pebesma, Edzer
    This paper presents an approach for a quantitative analysis of movement patterns of nomadic households based on GPS trajectories. We distributed GPS loggers to 400 Mongolian herder households who carried them over a 9-month period, continuously recording position data every 30min. A total of 142of the resulting trajectories fulfilled our data quality criteria and were considered during the analysis. Based on this data, we derive summary indicators describing key parameters of the households’ mobility including measures of distance and number of movements as well as shape characteristics of the trajectories. We conduct an explorative statistical analysis of these summary indicators to investigate patterns in the nomadic mobility. We identify three movement strategies based on the number of different campsite locations and the distances traveled between campsites. We also compare the results to the existing literature on the mobility of Mongolian herders. Our findings show that GPS-based studies present a suitable framework to quantitatively analyze different movement strategies of nomadic herders.
  • Item
    Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet
    (Katlenburg-Lindau : Copernicus, 2022) Schlemm, Tanja; Feldmann, Johannes; Winkelmann, Ricarda; Levermann, Anders
    Owing to global warming and particularly high regional ocean warming, both Thwaites and Pine Island Glaciers in the Amundsen region of the Antarctic Ice Sheet could lose their buttressing ice shelves over time. We analyse the possible consequences using the parallel ice sheet model (PISM), applying a simple cliff-calving parameterization and an ice mélange-buttressing model. We find that the instantaneous loss of ice-shelf buttressing, due to enforced ice-shelf melting, initiates grounding-line retreat and triggers marine ice sheet instability (MISI). As a consequence, the grounding line progresses into the interior of the West Antarctic Ice Sheet and leads to a sea level contribution of 0.6m within 100a. By subjecting the exposed ice cliffs to cliff calving using our simplified parameterization, we also analyse marine ice cliff instability (MICI). In our simulations it can double or even triple the sea level contribution depending on the only loosely constrained parameter that determines the maximum cliff-calving rate. The speed of MICI depends on this upper bound of the calving rate, which is given by the ice mélange buttressing the glacier. However, stabilization of MICI may occur for geometric reasons. Because the embayment geometry changes as MICI advances into the interior of the ice sheet, the upper bound on calving rates is reduced and the progress of MICI is slowed down. Although we cannot claim that our simulations bear relevant quantitative estimates of the effect of ice-mélange buttressing on MICI, the mechanism has the potential to stop the instability. Further research is needed to evaluate its role for the past and future evolution of the Antarctic Ice Sheet.
  • Item
    The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model
    (Katlenburg-Lindau : Copernicus, 2020) Reese, Ronja; Levermann, Anders; Albrecht, Torsten; Seroussi, Hélène; Winkelmann, Ricarda
    Mass loss from the Antarctic Ice Sheet constitutes the largest uncertainty in projections of future sea level rise. Ocean-driven melting underneath the floating ice shelves and subsequent acceleration of the inland ice streams are the major reasons for currently observed mass loss from Antarctica and are expected to become more important in the future. Here we show that for projections of future mass loss from the Antarctic Ice Sheet, it is essential (1) to better constrain the sensitivity of sub-shelf melt rates to ocean warming and (2) to include the historic trajectory of the ice sheet. In particular, we find that while the ice sheet response in simulations using the Parallel Ice Sheet Model is comparable to the median response of models in three Antarctic Ice Sheet Intercomparison projects – initMIP, LARMIP-2 and ISMIP6 – conducted with a range of ice sheet models, the projected 21st century sea level contribution differs significantly depending on these two factors. For the highest emission scenario RCP8.5, this leads to projected ice loss ranging from 1.4 to 4.0 cm of sea level equivalent in simulations in which ISMIP6 ocean forcing drives the PICO ocean box model where parameter tuning leads to a comparably low sub-shelf melt sensitivity and in which no surface forcing is applied. This is opposed to a likely range of 9.1 to 35.8 cm using the exact same initial setup, but emulated from the LARMIP-2 experiments with a higher melt sensitivity, even though both projects use forcing from climate models and melt rates are calibrated with previous oceanographic studies. Furthermore, using two initial states, one with a previous historic simulation from 1850 to 2014 and one starting from a steady state, we show that while differences between the ice sheet configurations in 2015 seem marginal at first sight, the historic simulation increases the susceptibility of the ice sheet to ocean warming, thereby increasing mass loss from 2015 to 2100 by 5 % to 50 %. Hindcasting past ice sheet changes with numerical models would thus provide valuable tools to better constrain projections. Our results emphasize that the uncertainty that arises from the forcing is of the same order of magnitude as the ice dynamic response for future sea level projections.
  • Item
    Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)
    (Katlenburg-Lindau : Copernicus, 2020) Ai, Zhipin; Hanasaki, Naota; Heck, Vera; Hasegawa, Tomoko; Fujimori, Shinichiro
    Large-scale deployment of bioenergy plantations would have adverse effects on water resources. There is an increasing need to ensure the appropriate inclusion of the bioenergy crops in global hydrological models. Here, through parameter calibration and algorithm improvement, we enhanced the global hydrological model H08 to simulate the bioenergy yield from two dedicated herbaceous bioenergy crops: Miscanthus and switchgrass. Site-specific evaluations showed that the enhanced model had the ability to simulate yield for both Miscanthus and switchgrass, with the calibrated yields being well within the ranges of the observed yield. Independent country-specific evaluations further confirmed the performance of the H08 (v.bio1). Using this improved model, we found that unconstrained irrigation more than doubled the yield under rainfed condition, but reduced the water use efficiency (WUE) by 32 % globally. With irrigation, the yield in dry climate zones can exceed the rainfed yields in tropical climate zones. Nevertheless, due to the low water consumption in tropical areas, the highest WUE was found in tropical climate zones, regardless of whether the crop was irrigated. Our enhanced model provides a new tool for the future assessment of bioenergy–water tradeoffs.
  • Item
    REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits
    (Katlenburg-Lindau : Copernicus, 2021) Baumstark, Lavinia; Bauer, Nico; Benke, Falk; Bertram, Christoph; Bi, Stephen; Gong, Chen Chris; Dietrich, Jan Philipp; Dirnaichner, Alois; Giannousakis, Anastasis; Hilaire, Jerome; Klein, David; Koch, Johannes; Leimbach, Marian; Levesque, Antoine; Madeddu, Silvia; Malik, Aman; Merfort, Anne; Merfort, Leon; Odenweller, Adrian; Pehl, Michaja; Pietzcker, Robert C.; Piontek, Franziska; Rauner, Sebastian; Rodrigues, Renato; Rottoli, Marianna; Schreyer, Felix; Schultes, Anselm; Soergel, Bjoern; Soergel, Dominika; Strefler, Jessica; Ueckerdt, Falko; Kriegler, Elmar; Luderer, Gunnar
    This paper presents the new and now open-source version 2.1 of the REgional Model of INvestments and Development (REMIND). REMIND, as an integrated assessment model (IAM), provides an integrated view of the global energy–economy–emissions system and explores self-consistent transformation pathways. It describes a broad range of possible futures and their relation to technical and socio-economic developments as well as policy choices. REMIND is a multiregional model incorporating the economy and a detailed representation of the energy sector implemented in the General Algebraic Modeling System (GAMS). It uses non-linear optimization to derive welfare-optimal regional transformation pathways of the energy-economic system subject to climate and sustainability constraints for the time horizon from 2005 to 2100. The resulting solution corresponds to the decentralized market outcome under the assumptions of perfect foresight of agents and internalization of external effects. REMIND enables the analyses of technology options and policy approaches for climate change mitigation with particular strength in representing the scale-up of new technologies, including renewables and their integration in power markets. The REMIND code is organized into modules that gather code relevant for specific topics. Interaction between different modules is made explicit via clearly defined sets of input and output variables. Each module can be represented by different realizations, enabling flexible configuration and extension. The spatial resolution of REMIND is flexible and depends on the resolution of the input data. Thus, the framework can be used for a variety of applications in a customized form, balancing requirements for detail and overall runtime and complexity.
  • Item
    NDCmitiQ v1.0.0: a tool to quantify and analyse greenhouse gas mitigation targets
    (Katlenburg-Lindau : Copernicus, 2021-9-14) Günther, Annika; Gütschow, Johannes; Jeffery, Mairi Louise
    Parties to the Paris Agreement (PA, 2015) outline their planned contributions towards achieving the PA temperature goal to “hold […] the increase in the global average temperature to well below 2 ∘C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 ∘C” (Article 2.1.a, PA) in their nationally determined contributions (NDCs). Most NDCs include targets to mitigate national greenhouse gas (GHG) emissions, which need quantifications to assess i.a. whether the current NDCs collectively put us on track to reach the PA temperature goals or the gap in ambition to do so. We implemented the new open-source tool “NDCmitiQ” to quantify GHG mitigation targets defined in the NDCs for all countries with quantifiable targets on a disaggregated level and to create corresponding national and global emissions pathways. In light of the 5-year update cycle of NDCs and the global stocktake, the quantification of NDCs is an ongoing task for which NDCmitiQ can be used, as calculations can easily be updated upon submission of new NDCs. In this paper, we describe the methodologies behind NDCmitiQ and quantification challenges we encountered by addressing a wide range of aspects, including target types and the input data from within NDCs; external time series of national emissions, population, and GDP; uniform approach vs. country specifics; share of national emissions covered by NDCs; how to deal with the Land Use, Land-Use Change and Forestry (LULUCF) component and the conditionality of pledges; and establishing pathways from single-year targets. For use in NDCmitiQ, we furthermore construct an emissions data set from the baseline emissions provided in the NDCs. Example use cases show how the tool can help to analyse targets on a national, regional, or global scale and to quantify uncertainties caused by a lack of clarity in the NDCs. Results confirm that the conditionality of targets and assumptions about economic growth dominate uncertainty in mitigated emissions on a global scale, which are estimated as 48.9–56.1 Gt CO2 eq. AR4 for 2030 (10th/90th percentiles, median: 51.8 Gt CO2 eq. AR4; excluding LULUCF and bunker fuels; submissions until 17 April 2020 and excluding the USA). We estimate that 77 % of global 2017 emissions were emitted from sectors and gases covered by these NDCs. Addressing all updated NDCs submitted by 31 December 2020 results in an estimated 45.6–54.1 Gt CO2 eq. AR4 (median: 49.6 Gt CO2 eq. AR4, now including the USA again) and increased coverage.