Search Results

Now showing 1 - 7 of 7
  • Item
    Influence of aerosol copper on HO2 uptake: A novel parameterized equation
    (Katlenburg-Lindau : EGU, 2020) Song, Huan; Chen, Xiaorui; Lu, Keding; Zou, Qi; Tan, Zhaofeng; Fuchs, Hendrik; Wiedensohler, Alfred; Moon, Daniel R.; Heard, Dwayne E.; Baeza-Romero, María-Teresa; Zheng, Mei; Wahner, Andreas; Kiendler-Scharr, Astrid; Zhang, Yuanhang
    Heterogeneous uptake of hydroperoxyl radicals (HO2) onto aerosols has been proposed to be a significant sink of HOx , hence impacting the atmospheric oxidation capacity. Accurate calculation of the HO2 uptake coefficient HO2 is key to quantifying the potential impact of this atmospheric process. Laboratory studies show that HO2 can vary by orders of magnitude due to changes in aerosol properties, especially aerosol soluble copper (Cu) concentration and aerosol liquid water content (ALWC). In this study we present a state-of-the-art model called MARK to simulate both gas- and aerosol-phase chemistry for the uptake of HO2 onto Cu-doped aerosols. Moreover, a novel parameterization of HO2 uptake was developed that considers changes in relative humidity (RH) and condensed-phase Cu ion concentrations and which is based on a model optimization using previously published and new laboratory data included in this work. This new parameterization will be applicable to wet aerosols, and it will complement current IUPAC recommendations. The new parameterization is as follows (the explanations for symbols are in the Appendix): (Formula presented) All parameters used in the paper are summarized in Table A1. Using this new equation, field data from a field campaign were used to evaluate the impact of the HO2 uptake onto aerosols on the ROx (=OH+HO2 CRO2) budget. Highly variable values for HO2 uptake were obtained for the North China Plain (median value <0.1). © 2020 Copernicus GmbH. All rights reserved.
  • Item
    Importance of secondary organic aerosol formation of iα/i-pinene, limonene, and im/i-cresol comparing day- And nighttime radical chemistry
    (Katlenburg-Lindau : European Geosciences Union, 2021) Mutzel, Anke; Zhang, Yanli; Böge, Olaf; Rodigast, Maria; Kolodziejczyk, Agata; Wang, Xinming; Herrmann, Hartmut
    The oxidation of biogenic and anthropogenic compounds leads to the formation of secondary organic aerosol mass (SOA). The present study aims to investigate span classCombining double low line"inline-formula"iα/i/span-pinene, limonene, and span classCombining double low line"inline-formula"im/i/span-cresol with regards to their SOA formation potential dependent on relative humidity (RH) under night- (NOspan classCombining double low line"inline-formula"3/span radicals) and daytime conditions (OH radicals) and the resulting chemical composition. It was found that SOA formation potential of limonene with NOspan classCombining double low line"inline-formula"3/span under dry conditions significantly exceeds that of the OH-radical reaction, with SOA yields of 15-30 % and 10-21 %, respectively. Additionally, the nocturnal SOA yield was found to be very sensitive towards RH, yielding more SOA under dry conditions. In contrast, the SOA formation potential of span classCombining double low line"inline-formula"iα/i/span-pinene with NOspan classCombining double low line"inline-formula"3/span slightly exceeds that of the OH-radical reaction, independent from RH. On average, span classCombining double low line"inline-formula"iα/i/span-pinene yielded SOA with about 6-7 % from NOspan classCombining double low line"inline-formula"3/span radicals and 3-4 % from OH-radical reaction. Surprisingly, unexpectedly high SOA yields were found for span classCombining double low line"inline-formula"im/i/span-cresol oxidation with OH radicals (3-9 %), with the highest yield under elevated RH (9 %), which is most likely attributable to a higher fraction of 3-methyl-6-nitro-catechol (MNC). While span classCombining double low line"inline-formula"iα/i/span-pinene and span classCombining double low line"inline-formula"im/i/span-cresol SOA was found to be mainly composed of water-soluble compounds, 50-68 % of nocturnal SOA and 22-39 % of daytime limonene SOA are water-insoluble. The fraction of SOA-bound peroxides which originated from span classCombining double low line"inline-formula"iα/i/span-pinene varied between 2 and 80 % as a function of RH./p pFurthermore, SOA from span classCombining double low line"inline-formula"iα/i/span-pinene revealed pinonic acid as the most important particle-phase constituent under day- and nighttime conditions with a fraction of 1-4 %. Other compounds detected are norpinonic acid (0.05-1.1 % mass fraction), terpenylic acid (0.1-1.1 % mass fraction), pinic acid (0.1-1.8 % mass fraction), and 3-methyl-1,2,3-tricarboxylic acid (0.05-0.5 % mass fraction). All marker compounds showed higher fractions under dry conditions when formed during daytime and showed almost no RH effect when formed during night./p © 2021 Copernicus GmbH. All rights reserved.
  • Item
    Model simulations of chemical effects of sprites in relation with observed HO2 enhancements over sprite-producing thunderstorms
    (Katlenburg-Lindau : European Geosciences Union, 2021) Winkler, Holger; Yamada, Takayoshi; Kasai, Yasuko; Berger, Uwe; Notholt, Justus
    Recently, measurements by the Superconducting Submillimeter-Wave Limb Emission Sounder (SMILES) satellite instrument have been presented which indicate an increase in mesospheric HO2 above sprite-producing thunderstorms. The aim of this paper is to compare these observations to model simulations of chemical sprite effects. A plasma chemistry model in combination with a vertical transport module was used to simulate the impact of a streamer discharge in the altitude range 70–80 km, corresponding to one of the observed sprite events. Additionally, a horizontal transport and dispersion model was used to simulate advection and expansion of the sprite air masses. The model simulations predict a production of hydrogen radicals mainly due to reactions of proton hydrates formed after the electrical discharge. The net effect is a conversion of water molecules into H+OH. This leads to increasing HO2 concentrations a few hours after the electric breakdown. Due to the modelled long-lasting increase in HO2 after a sprite discharge, an accumulation of HO2 produced by several sprites appears possible. However, the number of sprites needed to explain the observed HO2 enhancements is unrealistically large. At least for the lower measurement tangent heights, the production mechanism of HO2 predicted by the model might contribute to the observed enhancements.
  • Item
    Impact of water uptake and mixing state on submicron particle deposition in the human respiratory tract (HRT) based on explicit hygroscopicity measurements at HRT-like conditions
    (Katlenburg-Lindau : EGU, 2022) Man, Ruiqi; Wu, Zhijun; Zong, Taomou; Voliotis, Aristeidis; Qiu, Yanting; Größ, Johannes; van Pinxteren, Dominik; Zeng, Limin; Herrmann, Hartmut; Wiedensohler, Alfred; Hu, Min
    Particle hygroscopicity plays a key role in determining the particle deposition in the human respiratory tract (HRT). In this study, the effects of hygroscopicity and mixing state on regional and total deposition doses on the basis of the particle number concentration for children, adults, and the elderly were quantified using the Multiple-Path Particle Dosimetry model, based on the size-resolved particle hygroscopicity measurements at HRT-like conditions (relative humidity = 98 %) performed in the North China Plain. The measured particle population with an external mixing state was dominated by hygroscopic particles (number fraction = (91.5 ± 5.7) %, mean ± standard deviation (SD); the same below). Particle hygroscopic growth in the HRT led to a reduction by around 24 % in the total doses of submicron particles for all age groups. Such a reduction was mainly caused by the growth of hygroscopic particles and was more pronounced in the pulmonary and tracheobronchial regions. Regardless of hygroscopicity, the elderly group of people had the highest total dose among three age groups, while children received the maximum total deposition rate. With 270 nm in diameter as the boundary, the total deposition doses of particles smaller than this diameter were overestimated, and those of larger particles were underestimated, assuming no particle hygroscopic growth in the HRT. From the perspective of the daily variation, the deposition rates of hygroscopic particles with an average of (2.88 ± 0.81) × 109 particles h-1 during the daytime were larger than those at night ((2.32 ± 0.24) × 109 particles h-1). On the contrary, hydrophobic particles interpreted as freshly emitted soot and primary organic aerosols exhibited higher deposition rates at nighttime ((3.39 ± 1.34) × 108 particles h-1) than those in the day ((2.58 ± 0.76) × 108 particles h-1). The traffic emissions during the rush hours enhanced the deposition rate of hydrophobic particles. This work provides a more explicit assessment of the impact of hygroscopicity and mixing state on the deposition pattern of submicron particles in the HRT. Copyright:
  • Item
    Tracing the Snowball bifurcation of aquaplanets through time reveals a fundamental shift in critical-state dynamics
    (Göttingen : Copernicus, 2023) Feulner, Georg; Bukenberger, Mona; Petri, Stefan
    The instability with respect to global glaciation is a fundamental property of the climate system caused by the positive ice-albedo feedback. The atmospheric concentration of carbon dioxide (CO2) at which this Snowball bifurcation occurs changes through Earth's history, most notably because of the slowly increasing solar luminosity. Quantifying this critical CO2 concentration is not only interesting from a climate dynamics perspective but also constitutes an important prerequisite for understanding past Snowball Earth episodes, as well as the conditions for habitability on Earth and other planets. Earlier studies are limited to investigations with very simple climate models for Earth's entire history or studies of individual time slices carried out with a variety of more complex models and for different boundary conditions, making comparisons and the identification of secular changes difficult. Here, we use a coupled climate model of intermediate complexity to trace the Snowball bifurcation of an aquaplanet through Earth's history in one consistent model framework. We find that the critical CO2 concentration decreased more or less logarithmically with increasing solar luminosity until about 1 billion years ago but dropped faster in more recent times. Furthermore, there was a fundamental shift in the dynamics of the critical state about 1.2 billion years ago (unrelated to the downturn in critical CO2 values), driven by the interplay of wind-driven sea-ice dynamics and the surface energy balance: for critical states at low solar luminosities, the ice line lies in the Ferrel cell, stabilised by the poleward winds despite moderate meridional temperature gradients under strong greenhouse warming. For critical states at high solar luminosities, on the other hand, the ice line rests at the Hadley cell boundary, stabilised against the equatorward winds by steep meridional temperature gradients resulting from the increased solar energy input at lower latitudes and stronger Ekman transport in the ocean.
  • Item
    No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014
    (Columbus, Ohio : American Chemical Society, 2020) Tan, Zhaofeng; Hofzumahaus, Andreas; Lu, Keding; Brown, Steven S.; Holland, Frank; Huey, Lewis Gregory; Kiendler-Scharr, Astrid; Li, Xin; Liu, Xiaoxi; Ma, Nan; Min, Kyung-Eun; Rohrer, Franz; Shao, Min; Wahner, Andreas; Wang, Yuhang; Wiedensohler, Alfred; Wu, Yusheng; Wu, Zhijun; Zeng, Limin; Zhang, Yuanhang; Fuchs, Hendrik
    The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO2) and organic peroxy radicals (RO2) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area. Radical and trace gas concentrations were measured, allowing for calculating the turnover rates of gas-phase radical reactions. Therefore, the importance of heterogeneous HO2 uptake on aerosol could be experimentally determined. HO2 uptake could have suppressed ozone formation at that time because of the competition with gas-phase reactions that produce ozone. The successful reduction of the aerosol load in the North China Plain in the last years could have led to a significant decrease of HO2 loss on particles, so that ozone-forming reactions could have gained importance in the last years. However, the analysis of the measured radical budget in this campaign shows that HO2 aerosol uptake did not impact radical chemistry for chemical conditions in 2014. Therefore, reduced HO2 uptake on aerosol since then is likely not the reason for the increasing number of ozone pollution events in the North China Plain, contradicting conclusions made from model calculations reported in the literature. © 2020 American Chemical Society.
  • Item
    The evolution of cloud and aerosol microphysics at the summit of Mt. Tai, China
    (Katlenburg-Lindau : EGU, 2020) Li, Jiarong; Zhu, Chao; Chen, Hui; Zhao, Defeng; Xue, Likun; Wang, Xinfeng; Li, Hongyong; Liu, Pengfei; Liu, Junfeng; Zhang, Chenglong; Mu, Yujing; Zhang, Wenjin; Zhang, Luming; Herrmann, Hartmut; Li, Kai; Liu, Min; Chen, Jianmin
    The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and the behaviours of clouds and their influence on climate. In an attempt to better understand the microphysical properties of cloud droplets, the simultaneous variations in aerosol microphysics and their potential interactions during cloud life cycles in the North China Plain, an intensive observation took place from 17 June to 30 July 2018 at the summit of Mt. Tai. Cloud microphysical parameters were monitored simultaneously with number concentrations of cloud condensation nuclei (NCCN) at different supersaturations, PM2:5 mass concentrations, particle size distributions and meteorological parameters. Number concentrations of cloud droplets (NC), liquid water content (LWC) and effective radius of cloud droplets (reff) show large variations among 40 cloud events observed during the campaign. The low values of reff and LWC observed at Mt. Tai are comparable with urban fog. Clouds on clean days are more susceptible to the change in concentrations of particle number (NP), while clouds formed on polluted days might be more sensitive to meteorological parameters, such as updraft velocity and cloud base height. Through studying the size distributions of aerosol particles and cloud droplets, we find that particles larger than 150 nm play important roles in forming cloud droplets with the size of 5-10 μm. In general, LWC consistently varies with reff. As NC increases, reff changes from a trimodal distribution to a unimodal distribution and shifts to smaller size mode. By assuming a constant cloud thickness and ignoring any lifetime effects, increase in NC and decrease in reff would increase cloud albedo, which may induce a cooling effect on the local climate system. Our results contribute valuable information to enhance the understanding of cloud and aerosol properties, along with their potential interactions on the North China plain. © Author(s) 2020.