Search Results

Now showing 1 - 8 of 8
  • Item
    Refractory metal-based ohmic contacts on β-Ga2O3 using TiW
    (Melville, NY : AIP Publ., 2022) Tetzner, Kornelius; Schewski, Robert; Popp, Andreas; Anooz, Saud Bin; Chou, Ta-Shun; Ostermay, Ina; Kirmse, Holm; Würfl, Joachim
    The present work investigates the use of the refractory metal alloy TiW as a possible candidate for the realization of ohmic contacts to the ultrawide bandgap semiconductor β-Ga2O3. Ohmic contact properties were analyzed by transfer length measurements of TiW contacts annealed at temperatures between 400 and 900 °C. Optimum contact properties with a contact resistance down to 1.5 × 10-5 ω cm2 were achieved after annealing at 700 °C in nitrogen on highly doped β-Ga2O3. However, a significant contact resistance increase was observed at annealing temperatures above 700 °C. Cross-sectional analyses of the contacts using scanning transmission electron microscopy revealed the formation of a TiOx interfacial layer of 3-5 nm between TiW and β-Ga2O3. This interlayer features an amorphous structure and most probably possesses a high amount of vacancies and/or Ga impurities supporting charge carrier injection. Upon annealing at temperatures of 900 °C, the interlayer increases in thickness up to 15 nm, featuring crystalline-like properties, suggesting the formation of rutile TiO2. Although severe morphological changes at higher annealing temperatures were also verified by atomic force microscopy, the root cause for the contact resistance increase is attributed to the structural changes in thickness and crystallinity of the interfacial layer.
  • Item
    Editors' Choice - Precipitation of Suboxides in Silicon, their Role in Gettering of Copper Impurities and Carrier Recombination
    (Pennington, NJ : ECS, 2020) Kissinger, G.; Kot, D.; Huber, A.; Kretschmer, R.; Müller, T.; Sattler, A.
    This paper describes a theoretical investigation of the phase composition of oxide precipitates and the corresponding emission of self-interstitials at the minimum of the free energy and their evolution with increasing number of oxygen atoms in the precipitates. The results can explain the compositional evolution of oxide precipitates and the role of self-interstitials therein. The formation of suboxides at the edges of SiO2 precipitates after reaching a critical size can explain several phenomena like gettering of Cu by segregation to the suboxide region and lifetime reduction by recombination of minority carriers in the suboxide. It provides an alternative explanation, based on minimized free energy, to the theory of strained and unstrained plates. A second emphasis was payed to the evolution of the morphology of oxide precipitates. Based on the comparison with results from scanning transmission electron microscopy the sequence of morphology evolution of oxide precipitates was deduced. It turned out that it is opposite to the sequence assumed until now. © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
  • Item
    Giant persistent photoconductivity in monolayer MoS2 field-effect transistors
    (London : Nature Publishing Group, 2021) George, A.; Fistul, M.V.; Gruenewald, M.; Kaiser, D.; Lehnert, T.; Mupparapu, R.; Neumann, C.; Hübner, U.; Schaal, M.; Masurkar, N.; Arava, L.M.R.; Staude, I.; Kaiser, U.; Fritz, T.; Turchanin, A.
    Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD-based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (λ = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large number of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis for the defect-based engineering of the electronic and optical properties of TMDs for device applications.
  • Item
    Conversion of p–n conduction type by spinodal decomposition in Zn-Sb-Bi phase-change alloys
    ([London] : Macmillan Publishers Limited, part of Springer Nature Tokyo, 2020) Wang, Guoxiang; Shi, Haizhou; Lotnyk, Andriy; Shi, Daotian; Wang, Rongping
    Phase-change films with multiple resistance levels are promising for increasing the storage density in phase-change memory technology. Diffusion-dominated Zn2Sb3 films undergo transitions across three states, from high through intermediate to low resistance, upon annealing. The properties of the Zn2Sb3 material can be further optimized by doping with Bi. Based on scanning transmission electron microscopy combined with electrical transport measurements, at a particular Bi concentration, the conduction of Zn-Sb-Bi compounds changes from p- to n-type, originating from spinodal decomposition. Simultaneously, the change in the temperature coefficient of resistivity shows a metal-to-insulator transition. Further analysis of microstructure characteristics reveals that the distribution of the Bi-Sb phase may be the origin of the driving force for the p–n conduction and metal-to-insulator transitions and therefore may provide us with another way to improve multilevel data storage. Moreover, the Bi doping promotes the thermoelectric properties of the studied alloys, leading to higher values of the power factor compared to known reported structures. The present study sheds valuable light on the spinodal decomposition process caused by Bi doping, which can also occur in a wide variety of chalcogenide-based phase-change materials. In addition, the study provides a new strategy for realizing novel p–n heterostructures for multilevel data storage and thermoelectric applications.
  • Item
    Controlling palladium morphology in electrodeposition from nanoparticles to dendrites via the use of mixed solvents
    (Cambridge : RSC Publ., 2020) Hussein, Haytham E. M.; Amari, Houari; Breeze, Ben G.; Beanland, Richard; Macpherson, Julie V.
    By changing the mole fraction of water (χwater) in the solvent acetonitrile (MeCN), we report a simple procedure to control nanostructure morphology during electrodeposition. We focus on the electrodeposition of palladium (Pd) on electron beam transparent boron-doped diamond (BDD) electrodes. Three solutions are employed, MeCN rich (90% v/v MeCN, χwater = 0.246), equal volumes (50% v/v MeCN, χwater = 0.743) and water rich (10% v/v MeCN, χwater = 0.963), with electrodeposition carried out under a constant, and high overpotential (−1.0 V), for fixed time periods (50, 150 and 300 s). Scanning transmission electron microscopy (STEM) reveals that in MeCN rich solution, Pd atoms, amorphous atom clusters and (majority) nanoparticles (NPs) result. As water content is increased, NPs are again evident but also elongated and defected nanostructures which grow in prominence with time. In the water rich environment, NPs and branched, concave and star-like Pd nanostructures are now seen, which with time translate to aggregated porous structures and ultimately dendrites. We attribute these observations to the role MeCN adsorption on Pd surfaces plays in retarding metal nucleation and growth.
  • Item
    In Situ Transmission Electron Microscopy of Disorder–Order Transition in Epitaxially Stabilized FeGe2
    (Washington, DC : Soc., 2021) Terker, Markus; Nicolai, Lars; Gaucher, Samuel; Herfort, Jens; Trampert, Achim
    Isothermal crystallization of amorphous Ge deposited on a cubic Fe3Si/GaAs(001) substrate is performed by in situ annealing within a transmission electron microscope. It was found that the formation of epitaxially aligned tetragonal FeGe2 is associated with a disorder–order phase transition mainly consisting of a rearrangement of the Fe/vacancy sublattice from a random distribution to alternating filled and empty layers. Additionally, atomically resolved high-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy demonstrated that the vertical lattice spacing of the Ge sublattice reduces across vacancy layers, indicating that strain minimization plays a role in the phase transition process. Crystallization and ordering are both found to proceed layer-by-layer and with square-root-shaped kinetics with a smaller transition rate for the latter.
  • Item
    Consolidation and performance gains in plasma-sintered printed nanoelectrodes
    (Cambridge : Royal Society of Chemistry, 2023) Engel, Lukas F.; González-García, Lola; Kraus, Tobias
    We report on the unusual, advantageous ageing of flexible transparent electrodes (FTEs) that were self-assembled from oleylamine-capped gold nanospheres (AuNPs) by direct nanoimprinting of inks with different particle concentrations (cAu = 3 mg mL−1 to 30 mg mL−1). The resulting lines were less than 2.5 μm wide and consisted of disordered particle assemblies. Small-Angle X-ray Scattering confirmed that particle packing did not change with ink concentration. Plasma sintering converted the printed structures into lines with a thin, electrically conductive metal shell and a less conductive hybrid core. We studied the opto-electronic performance directly after plasma sintering and after fourteen days of storage at 22 °C and 55% rH in the dark. The mean optical transmittance T̄400-800 in the range from 400 nm to 800 nm increased by up to ≈ 3%, while the sheet resistance Rsh strongly decreased by up to ≈ 82% at all concentrations. We correlated the changes with morphological changes visible in scanning and transmission electron microscopy and identified two sequential ageing stages: (I) post-plasma relaxation effects in and consolidation of the shell, and (II) particle re-organization, de-mixing, coarsening, and densification of the core with plating of Au from the core onto the shell, followed by solid-state de-wetting (ink concentrations cAu < 15 mg mL−1) or stability (cAu ≥ 15 mg mL−1). The plating of Au from the hybrid core improved the FTEs' Figure of Merit FOM = T̄400-800·Rsh−1 by up to ≈ 5.8 times and explains the stable value of ≈ 3.3%·Ωsq−1 reached after 7 days of ageing at cAu = 30 mg mL−1
  • Item
    Polyacrylonitrile-containing amphiphilic block copolymers: self-assembly and porous membrane formation
    (Cambridge : RSC Publ., 2023) Gemmer, Lea; Niebuur, Bart-Jan; Dietz, Christian; Rauber, Daniel; Plank, Martina; Frieß, Florian V.; Presser, Volker; Stark, Robert W.; Kraus, Tobias; Gallei, Markus
    The development of hierarchically porous block copolymer (BCP) membranes via the application of the self-assembly and non-solvent induced phase separation (SNIPS) process is one important achievement in BCP science in the last decades. In this work, we present the synthesis of polyacrylonitrile-containing amphiphilic BCPs and their unique microphase separation capability, as well as their applicability for the SNIPS process leading to isoporous integral asymmetric membranes. Poly(styrene-co-acrylonitrile)-b-poly(2-hydroxyethyl methacrylate)s (PSAN-b-PHEMA) are synthesized via a two-step atom transfer radical polymerization (ATRP) procedure rendering PSAN copolymers and BCPs with overall molar masses of up to 82 kDa while maintaining low dispersity index values in the range of Đ = 1.13-1.25. The polymers are characterized using size-exclusion chromatography (SEC) and NMR spectroscopy. Self-assembly capabilities in the bulk state are examined using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) measurements. The fabrication of isoporous integral asymmetric membranes is investigated, and membranes are examined by scanning electron microscopy (SEM). The introduction of acrylonitrile moieties within the membrane matrix could improve the membranes’ mechanical properties, which was confirmed by nanomechanical analysis using atomic force microscopy (AFM).