Search Results

Now showing 1 - 10 of 10
  • Item
    Kinetic Control over Self-Assembly of Semiconductor Nanoplatelets
    (Washington, DC : American Chemical Society, 2020) Momper, R.; Zhang, H.; Chen, S.; Halim, H.; Johannes, E.; Yordanov, S.; Braga, D.; Blülle, B.; Doblas, D.; Kraus, T.; Kraus, T.; Bonn, M.; Wang, H.I.; Riedinger, A.
    Semiconductor nanoplatelets exhibit spectrally pure, directional fluorescence. To make polarized light emission accessible and the charge transport effective, nanoplatelets have to be collectively oriented in the solid state. We discovered that the collective nanoplatelets orientation in monolayers can be controlled kinetically by exploiting the solvent evaporation rate in self-assembly at liquid interfaces. Our method avoids insulating additives such as surfactants, making it ideally suited for optoelectronics. The monolayer films with controlled nanoplatelets orientation (edge-up or face-down) exhibit long-range ordering of transition dipole moments and macroscopically polarized light emission. Furthermore, we unveil that the substantial in-plane electronic coupling between nanoplatelets enables charge transport through a single nanoplatelets monolayer, with an efficiency that strongly depends on the orientation of the nanoplatelets. The ability to kinetically control the assembly of nanoplatelets into ordered monolayers with tunable optical and electronic properties paves the way for new applications in optoelectronic devices.
  • Item
    Suppression of nematicity by tensile strain in multilayer FeSe/SrTiO3 films
    (College Park, MD : APS, 2023) Lou, Rui; Suvorov, Oleksandr; Grafe, Hans-Joachim; Kuibarov, Andrii; Krivenkov, Maxim; Rader, Oliver; Büchner, Bernd; Borisenko, Sergey; Fedorov, Alexander
    The nematicity in multilayer FeSe/SrTiO3 films has been previously suggested to be enhanced with decreasing film thickness. Motivated by this, there have been many discussions about the competing relation between nematicity and superconductivity. However, the criterion for determining the nematicity strength in FeSe remains highly debated. The understanding of nematicity as well as its relation to superconductivity in FeSe films is therefore still controversial. Here, we fabricate multilayer FeSe/SrTiO3 films using molecular beam epitaxy and study the nematic properties by combining angle-resolved photoemission spectroscopy, Se77 nuclear magnetic resonance, and scanning tunneling microscopy experiments. We unambiguously demonstrate that, near the interface, the nematic order is suppressed by the SrTiO3-induced tensile strain; in the bulk region further away from the interface, the strength of nematicity recovers to the bulk value. Our results not only solve the recent controversy about the nematicity in multilayer FeSe films, but also offer valuable insights into the relationship between nematicity and superconductivity.
  • Item
    Modulating the luminance of organic light-emitting diodes: Via optical stimulation of a photochromic molecular monolayer at transparent oxide electrode
    (Cambridge : RSC Publ., 2020) Ligorio, Giovanni; Cotella, Giovanni F.; Bonasera, Aurelio; Zorn Morales, Nicolas; Carnicella, Giuseppe; Kobin, Björn; Wang, Qiankun; Koch, Norbert; Hecht, Stefan; List-Kratochvil, Emil J.W.; Cacialli, Franco
    Self-assembled monolayers (SAMs) deposited on bottom electrodes are commonly used to tune charge carrier injection or blocking in optoelectronic devices. Beside the enhancement of device performance, the fabrication of multifunctional devices in which the output can be modulated by multiple external stimuli remains a challenging target. In this work, we report the functionalization of an indium tin oxide (ITO) electrode with a SAM of a diarylethene derivative designed for optically control the electronic properties. Following the demonstration of dense SAM formation and its photochromic activity, as a proof-of-principle, an organic light-emitting diode (OLED) embedding the light-responsive SAM-covered electrode was fabricated and characterized. Optically addressing the two-terminal device by irradiation with ultraviolet light doubles the electroluminescence. The original value can be restored reversibly by irradiation with visible light. This expanded functionality is based on the photoinduced modulation of the electronic structure of the diarylethene isomers, which impact the charge carriers' confinement within the emissive layer. This approach could be successfully exploited in the field of opto-communication technology, for example to fabricate opto-electronic logic circuits. © 2020 The Royal Society of Chemistry.
  • Item
    Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds
    (Cambridge : RSC Publ., 2020) Fernandez, L.; Blanco-Rey, M.; Castrillo-Bodero, R.; Ilyn, M.; Ali, K.; Turco, E.; Corso, M.; Ormaza, M.; Gargiani, P.; Valbuena, M.A.; Mugarza, A.; Moras, P.; Sheverdyaeva, P.M.; Kundu, Asish K.; Jugovac, M.; Laubschat, C.; Ortega, J.E.; Schiller, F.
    One-atom-thick rare-earth/noble metal (RE-NM) compounds are attractive materials to investigate two-dimensional magnetism, since they are easy to synthesize into a common RE-NM2 structure with high crystal perfection. Here we perform a comparative study of the GdAu2, HoAu2, and YbAu2 monolayer compounds grown on Au(111). We find the same atomic lattice quality and moiré superlattice periodicity in the three cases, but different electronic properties and magnetism. The YbAu2 monolayer reveals the characteristic electronic signatures of a mixed-valence configuration in the Yb atom. In contrast, GdAu2 and HoAu2 show the trivalent character of the rare-earth and ferromagnetic transitions below 22 K. Yet, the GdAu2 monolayer has an in-plane magnetic easy-axis, versus the out-of-plane one in HoAu2. The electronic bands of the two trivalent compounds are very similar, while the divalent YbAu2 monolayer exhibits different band features. In the latter, a strong 4f-5d hybridization is manifested in neatly resolved avoided crossings near the Fermi level. First principles theory points to a residual presence of empty 4f states, explaining the fluctuating valence of Yb in the YbAu2 monolayer. © The Royal Society of Chemistry.
  • Item
    On-chip integrated process-programmable sub-10 nm thick molecular devices switching between photomultiplication and memristive behaviour
    ([London] : Nature Publishing Group UK, 2022) Li, Tianming; Hantusch, Martin; Qu, Jiang; Bandari, Vineeth Kumar; Knupfer, Martin; Zhu, Feng; Schmidt, Oliver G.
    Molecular devices constructed by sub-10 nm thick molecular layers are promising candidates for a new generation of integratable nanoelectronic applications. Here, we report integrated molecular devices based on ultrathin copper phthalocyanine/fullerene hybrid layers with microtubular soft-contacts, which exhibit process-programmable functionality switching between photomultiplication and memristive behaviour. The local electric field at the interface between the polymer bottom electrode and the enclosed molecular channels modulates the ionic-electronic charge interaction and hence determines the transition of the device function. When ions are not driven into the molecular channels at a low interface electric field, photogenerated holes are trapped as electronic space charges, resulting in photomultiplication with a high external quantum efficiency. Once mobile ions are polarized and accumulated as ionic space charges in the molecular channels at a high interface electric field, the molecular devices show ferroelectric-like memristive switching with remarkable resistive ON/OFF and rectification ratios.
  • Item
    Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors
    (Weinheim : Wiley-VCH Verlag, 2020) Ngo G.Q.; George A.; Schock R.T.K.; Tuniz A.; Najafidehaghani E.; Gan Z.; Geib N.C.; Bucher T.; Knopf H.; Saravi S.; Neumann C.; Lühder T.; Schartner E.P.; Warren-Smith S.C.; Ebendorff-Heidepriem H.; Pertsch T.; Schmidt M.A.; Turchanin A.; Eilenberger F.
    Atomically thin transition metal dichalcogenides are highly promising for integrated optoelectronic and photonic systems due to their exciton-driven linear and nonlinear interactions with light. Integrating them into optical fibers yields novel opportunities in optical communication, remote sensing, and all-fiber optoelectronics. However, the scalable and reproducible deposition of high-quality monolayers on optical fibers is a challenge. Here, the chemical vapor deposition of monolayer MoS2 and WS2 crystals on the core of microstructured exposed-core optical fibers and their interaction with the fibers’ guided modes are reported. Two distinct application possibilities of 2D-functionalized waveguides to exemplify their potential are demonstrated. First, the excitonic 2D material photoluminescence is simultaneously excited and collected with the fiber modes, opening a novel route to remote sensing. Then it is shown that third-harmonic generation is modified by the highly localized nonlinear polarization of the monolayers, yielding a new avenue to tailor nonlinear optical processes in fibers. It is anticipated that the results may lead to significant advances in optical-fiber-based technologies. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Reactive plasma cleaning and restoration of transition metal dichalcogenide monolayers
    (London : Nature Publishing Group, 2021) Marinov, Daniil; de Marneffe, Jean-François; Smets, Quentin; Arutchelvan, Goutham; Bal, Kristof M.; Voronina, Ekaterina; Rakhimova, Tatyana; Mankelevich, Yuri; El Kazzi, Salim; Nalin Mehta, Ankit; Wyndaele, Pieter-Jan; Heyne, Markus Hartmut; Zhang, Jianran; With, Patrick C.; Banerjee, Sreetama; Neyts, Erik C.; Asselberghs, Inge; Lin, Dennis; De Gendt, Stefan
    The cleaning of two-dimensional (2D) materials is an essential step in the fabrication of future devices, leveraging their unique physical, optical, and chemical properties. Part of these emerging 2D materials are transition metal dichalcogenides (TMDs). So far there is limited understanding of the cleaning of “monolayer” TMD materials. In this study, we report on the use of downstream H2 plasma to clean the surface of monolayer WS2 grown by MOCVD. We demonstrate that high-temperature processing is essential, allowing to maximize the removal rate of polymers and to mitigate damage caused to the WS2 in the form of sulfur vacancies. We show that low temperature in situ carbonyl sulfide (OCS) soak is an efficient way to resulfurize the material, besides high-temperature H2S annealing. The cleaning processes and mechanisms elucidated in this work are tested on back-gated field-effect transistors, confirming that transport properties of WS2 devices can be maintained by the combination of H2 plasma cleaning and OCS restoration. The low-damage plasma cleaning based on H2 and OCS is very reproducible, fast (completed in a few minutes) and uses a 300 mm industrial plasma etch system qualified for standard semiconductor pilot production. This process is, therefore, expected to enable the industrial scale-up of 2D-based devices, co-integrated with silicon technology.
  • Item
    Giant persistent photoconductivity in monolayer MoS2 field-effect transistors
    (London : Nature Publishing Group, 2021) George, A.; Fistul, M.V.; Gruenewald, M.; Kaiser, D.; Lehnert, T.; Mupparapu, R.; Neumann, C.; Hübner, U.; Schaal, M.; Masurkar, N.; Arava, L.M.R.; Staude, I.; Kaiser, U.; Fritz, T.; Turchanin, A.
    Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD-based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (λ = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large number of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis for the defect-based engineering of the electronic and optical properties of TMDs for device applications.
  • Item
    Lifshitz transition in titanium carbide driven by a graphene overlayer
    (College Park, MD : APS, 2023) Krivenkov, M.; Marchenko, D.; Golias, E.; Sajedi, M.; Frolov, A.S.; Sánchez-Barriga, J.; Fedorov, A.; Yashina, L.V.; Rader, O.; Varykhalov, A.
    Two-dimensional (2D) Dirac materials are electronically and structurally very sensitive to proximity effects. We demonstrate, however, the opposite effect: that the deposition of a monolayer 2D material could exercise a substantial influence on the substrate electronic structure. Here we investigate TiC(111) and show that a graphene overlayer produces a proximity effect, changing the Fermi surface topology of the TiC from six electron pockets to one hole pocket on the depth of several atomic layers inside the substrate. In addition, the graphene electronic structure undergoes an extreme modification as well. While the Dirac cone remains gapless, it experiences an energy shift of 1.0 eV beyond what was recently achieved for the Lifshitz transition of overdoped graphene. Due to this shift, the antibonding π∗ band at the M¯ point becomes occupied and observable by photoemission.
  • Item
    The interaction of chondroitin sulfate with a lipid monolayer observed by using nonlinear vibrational spectroscopy
    (Cambridge : RSC Publ., 2021) Szekeres, Gergo Peter; Krekic, Szilvia; Miller, Rebecca L.; Mero, Mark; Pagel, Kevin; Heiner, Zsuzsanna
    The first vibrational sum-frequency generation (VSFG) spectra of chondroitin sulfate (CS) interacting with dipalmitoyl phosphatidylcholine (DPPC) at air–liquid interface are reported here, collected at a laser repetition rate of 100 kHz. By studying the VSFG spectra in the regions of 1050–1450 cm−1, 2750–3180 cm−1, and 3200–3825 cm−1, it was concluded that in the presence of Ca2+ ions, the head groups together with the head-group-bound water molecules in the DPPC monolayer are strongly influenced by the interaction with CS, while the organization of the phospholipid tails remains mostly unchanged. The interactions were observed at a CS concentration below 200 nM, which exemplifies the potential of VSFG in studying biomolecular interactions at low physiological concentrations. The VSFG spectra recorded in the O–H stretching region at chiral polarization combination imply that CS molecules are organized into ordered macromolecular superstructures with a chiral secondary structure.