Search Results

Now showing 1 - 10 of 10
  • Item
    High temperature behavior of rual thin films on piezoelectric CTGS and LGS substrates
    (Basel : MDPI AG, 2020) Seifert, M.
    This paper reports on a significant further improvement of the high temperature stability of RuAl thin films (110 nm) on the piezoelectric Ca3TaGa3Si2O14 (CTGS) and La3Ga5SiO14 (LGS) substrates. RuAl thin films with AlN or SiO2 cover layers and barriers to the substrate (each 20 nm), as well as a combination of both were prepared on thermally oxidized Si substrates, which serve as a reference for fundamental studies, and the piezoelectric CTGS, as well as LGS substrates. In somefilms, additional Al layers were added. To study their high temperature stability, the samples were annealed in air and in high vacuum up to 900 °C, and subsequently their cross-sections, phase formation, film chemistry, and electrical resistivity were analyzed. It was shown that on thermally oxidized Si substrates, all films were stable after annealing in air up to 800 °C and in high vacuum up to 900 °C. The high temperature stability of RuAl thin films on CTGS substrates was improved up to 900 °C in high vacuum by the application of a combined AlN/SiO2 barrier layer and up to 800 °C in air using a SiO2 barrier. On LGS, the films were only stable up to 600 °C in air; however, a single SiO2 barrier layer was sufficient to prevent oxidation during annealing at 900 °C in high vacuum.
  • Item
    Ruthenacycles and Iridacycles as Transfer Hydrogenation Catalysts
    (Basel : MDPI, 2021) Ritleng, Vincent; de Vries, Johannes G.
    In this review, we describe the synthesis and use in hydrogen transfer reactions of ruthenacycles and iridacycles. The review limits itself to metallacycles where a ligand is bound in bidentate fashion to either ruthenium or iridium via a carbon-metal sigma bond, as well as a dative bond from a heteroatom or an N-heterocyclic carbene. Pincer complexes fall outside the scope. Described are applications in (asymmetric) transfer hydrogenation of aldehydes, ketones, and imines, as well as reductive aminations. Oxidation reactions, i.e., classical Oppenauer oxidation, which is the reverse of transfer hydrogenation, as well as dehydrogenations and oxidations with oxygen, are described. Racemizations of alcohols and secondary amines are also catalyzed by ruthenacycles and iridacycles.
  • Item
    The Importance of the Representation of DMS Oxidation in Global Chemistry‐Climate Simulations
    (Hoboken, NJ : Wiley, 2021) Hoffmann, Erik Hans; Heinold, Bernd; Kubin, Anne; Tegen, Ina; Herrmann, Hartmut
    The oxidation of dimethyl sulfide (DMS) is key for the natural sulfate aerosol formation and its climate impact. Multiphase chemistry is an important oxidation pathway but neglected in current chemistry-climate models. Here, the DMS chemistry in the aerosol-chemistry-climate model ECHAM-HAMMOZ is extended to include multiphase methane sulfonic acid (MSA) formation in deliquesced aerosol particles, parameterized by reactive uptake. First simulations agree well with observed gas-phase MSA concentrations. The implemented formation pathways are quantified to contribute up to 60% to the sulfate aerosol burden over the Southern Ocean and Arctic/Antarctic regions. While globally the impact on the aerosol radiative forcing almost levels off, a significantly more positive solar radiative forcing of up to +0.1 W m−2 is computed in the Arctic (>60°N). The findings imply the need of both further laboratory and model studies on the atmospheric multiphase oxidation of DMS.
  • Item
    DNAzymes as Catalysts for l-Tyrosine and Amyloid β Oxidation
    (Washington, DC : ACS Publications, 2020) Köhler, Tony; Patsis, Panagiotis A.; Hahn, Dominik; Ruland, André; Naas, Carolin; Müller, Martin; Thiele, Julian
    Single-stranded deoxyribonucleic acids have an enormous potential for catalysis by applying tailored sequences of nucleotides for individual reaction conditions and substrates. If such a sequence is guanine-rich, it may arrange into a three-dimensional structure called G-quadruplex and give rise to a catalytically active DNA molecule, a DNAzyme, upon addition of hemin. Here, we present a DNAzyme-mediated reaction, which is the oxidation of l-tyrosine toward dityrosine by hydrogen peroxide. With an optimal stoichiometry between DNA and hemin of 1:10, we report an activity of 101.2 ± 3.5 μUnits (μU) of the artificial DNAzyme Dz-00 compared to 33.0 ± 1.8 μU of free hemin. Exemplarily, DNAzymes may take part in neurodegeneration caused by amyloid beta (Aβ) aggregation due to l-tyrosine oxidation. We show that the natural, human genome-derived DNAzyme In1-sp is able to oxidize Aβ peptides with a 4.6% higher yield and a 33.3% higher velocity of the reaction compared to free hemin. As the artificial DNAzyme Dz-00 is even able to catalyze Aβ peptide oxidation with a 64.2% higher yield and 337.1% higher velocity, an in-depth screening of human genome-derived DNAzymes may identify further candidates with similarly high catalytic activity in Aβ peptide oxidation.
  • Item
    Examining the early stages of thermal oxidative degradation in epoxy-amine resins
    (Amsterdam [u.a.] : Elsevier Science, 2020) Morsch, Suzanne; Liu, Yanwen; Lyon, S.B.; Gibbon, S.R.; Gabriele, Benjamin; Malanin, Mikhail; Eichhorn, Klaus-Jochen
    Epoxy-amine resins continue to find widespread use as the binders in protective and decorative organic coatings, as the matrix in composite materials, and as adhesives. In service, exposure to the environment ultimately results in oxidative deterioration of these materials, limiting the performance lifetime. Defining this auto-oxidation process is therefore a key challenge in developing more durable high-performance materials. In this study, we investigate oxidative degradation of a model resin based on diglycidyl ether of bisphenol-A (DGEBA) and an aliphatic amine hardener, triethylenetetraamine (TETA). Using infrared spectroscopy, we find that prior to the expected detection of formate groups (corresponding to the well-known radical oxidation mechanism of DGEBA), a band at 1658 cm−1 forms, associated with amine cross-linker oxidation. Infrared microspectroscopy, in-situ heated ATR-infrared, Raman spectroscopy and AFM-IR techniques are thus employed to investigate the early stages of resin oxidation and demonstrate strong parallels between the initial stages of cured resin degradation and the auto-oxidation of TETA cross-linker molecules.
  • Item
    Phase formation and high-temperature stability of very thin co-sputtered Ti-Al and multilayered Ti/Al films on thermally oxidized si substrates
    (Basel : MDPI AG, 2020) Seifert, M.; Lattner, E.; Menzel, S.B.; Oswald, S.; Gemming, T.
    Ti-Al thin films with a thickness of 200 nm were prepared either by co-sputtering from elemental Ti and Al targets or as Ti/Al multilayers with 10 and 20 nm individual layer thickness on thermally oxidized Si substrates. Some of the films were covered with a 20-nm-thick SiO2 layer, which was used as an oxidation protection against the ambient atmosphere. The films were annealed at up to 800 °C in high vacuum for 10 h, and the phase formation as well as the film architecture was analyzed by X-ray diffraction, cross section, and transmission electron microscopy, as well as Auger electron and X-ray photoelectron spectroscopy. The results reveal that the co-sputtered films remained amorphous after annealing at 600 °C independent on the presence of the SiO2 cover layer. In contrast to this, the γ-TiAl phase was formed in the multilayer films at this temperature. After annealing at 800 °C, all films were degraded completely despite the presence of the cover layer. In addition, a strong chemical reaction between the Ti and SiO2 of the cover layer and the substrate took place, resulting in the formation of Ti silicide. In the multilayer samples, this reaction already started at 600 °C.
  • Item
    Evaluation of Sonocatalytic and Photocatalytic Processes Efficiency for Degradation of Humic Compounds Using Synthesized Transition-Metal-Doped ZnO Nanoparticles in Aqueous Solution
    (New York, NY [u.a.] : Hindawi, 2021) Maleki, Afshin; Seifi, Mehran; Marzban, Nader
    The existence of a humic substance in water causes the growth of microorganisms and reduces the quality of water; therefore, the removal of these materials is crucial. Here, the ZnO nanoparticles doped using transition metals, copper (Cu) and manganese (Mn), were used as an effective catalyst for photocatalytic removal of humic substances in an aqueous environment under ultraviolet, visible light, and light-emitting diode irradiations. Also, we study the effect of the sonocatalytic method. A solvothermal procedure is used for doping, and the Cu- and Mn-doped ZnO nanocatalyst were characterized by means of FTIR, XRD, AFM, SEM, and EDAX analyses. We investigate the effect of operational variables, including doping ratio, initial pH, catalyst dose, initial HS content, and illuminance on the removal efficiency of the processes. The findings of the analyses used for the characterization of the nanoparticles illustrate the appropriate synthesis of the Cu- and Mn-doped ZnO nanocatalysts. We observe the highest removal efficiency rate under acidic conditions and the process efficiency decreased with increasing solution pH, when we tested it in the range of 3–7. Photocatalytic decomposition of HS increases with a rise in catalyst dose, but an increase in initial HS content results in decreasing the removal efficiency. We observe the highest photocatalytic degradation of humic acid while using the visible light, and the highest removal efficiency is obtained using Cu.ZnO. The Cu.ZnO also shows better performance under ultraviolet irradiation compared to other agents.
  • Item
    Aerobic iron-catalyzed site-selective C(sp3)–C(sp3) bond cleavage in N-heterocycles
    (Amsterdam : Elsevier, 2021) Leonard, David K.; Li, Wu; Rockstroh, Nils; Junge, Kathrin; Beller, Matthias
    The kinetic and thermodynamic stability of C(sp3)–C(sp3) bonds makes the site-selective activation of these motifs a real synthetic challenge. In view of this, herein a site-selective method of C(sp3)–C(sp3) bond scission of amines, specifically morpholine and piperazine derivatives, using a cheap iron catalyst and air as a sustainable oxidant is reported. Furthermore, a statistical design of experiments (DoE) is used to evaluate multiple reaction parameters thereby allowing for the rapid development of a catalytic process. © 2021
  • Item
    Oxidative Esterification of 5-Hydroxymethylfurfural under Flow Conditions Using a Bimetallic Co/Ru Catalyst
    (Weinheim : Wiley-VCH Verlag, 2020) Salazar, Abel; Linke, Alexander; Eckelt, Reinhard; Quade, Antje; Kragl, Udo; Mejía, Esteban
    Furanic di-carboxylate derivatives of 5-Hydroxymethylfurfural (HMF) are nowadays important in the polymer industry as they are used as building blocks for bio-based polyesters. The high reactivity of HMF compels to avoid harsh synthetic conditions. Therefore, developing mild catalytic processes for its selective oxidation is a challenging task. Herein, we report the first oxidative esterification of HMF to dimethyl furan-2,5-dicarboxylate (FDCM) under flow conditions using oxygen as oxidant. For that purpose, a new series of nitrogen-doped carbon-supported bimetallic Co/Ru heterogeneous catalysts were prepared and characterized by XRD, XPS and N2 physisorption. These analyses revealed that the porosity of the materials and order of impregnation of the metals to the carbon supports lead to varying catalytic activities. Under optimized conditions the flow reactor showed a 15-fold increase on the production of FDCM compared to batch conditions. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Medical gas plasma promotes blood coagulation via platelet activation
    (Amsterdam [u.a.] : Elsevier, 2021) Bekeschus, Sander; Poschkamp, Broder; van der Linde, Julia
    Major blood loss still is a risk factor during surgery. Electrocauterization often is used for necrotizing the tissue and thereby halts bleeding (hemostasis). However, the carbonized tissue is prone to falling off, putting patients at risk of severe side effects, such as dangerous internal bleeding many hours after surgery. We have developed a medical gas plasma jet technology as an alternative to electrocauterization and investigated its hemostatic (blood clotting) effects and mechanisms of action using whole human blood. The gas plasma efficiently coagulated anticoagulated donor blood, which resulted from the local lysis of red blood cells (hemolysis). Image cytometry further showed enhanced platelet aggregation. Gas plasmas release reactive oxygen species (ROS), but neither scavenging of long-lived ROS nor addition of chemically-generated ROS were able to abrogate or recapitulate the gas plasma effect, respectively. However, platelet activation was markedly impaired in platelet-rich plasma when compared to gas plasma-treated whole blood that moreover contained significant amounts of hemoglobin indicative of red blood cell lysis (hemolysis). Finally, incubation of whole blood with concentration-matched hemolysates phenocopied the gas plasmas-mediated platelet activation. These results will spur the translation of plasma systems for hemolysis into clinical practice.