Search Results

Now showing 1 - 6 of 6
  • Item
    Multivariate non-parametric Euclidean distance model for hourly disaggregation of daily climate data
    (Wien [u.a.] : Springer, 2021) Görner, Christina; Franke, Johannes; Kronenberg, Rico; Hellmuth, Olaf; Bernhofer, Christian
    The algorithm for and results of a newly developed multivariate non-parametric model, the Euclidean distance model (EDM), for the hourly disaggregation of daily climate data are presented here. The EDM is a resampling method based on the assumption that the day to be disaggregated has already occurred once in the past. The Euclidean distance (ED) serves as a measure of similarity to select the most similar day from historical records. EDM is designed to disaggregate daily means/sums of several climate elements at once, here temperature (T), precipitation (P), sunshine duration (SD), relative humidity (rH), and wind speed (WS), while conserving physical consistency over all disaggregated elements. Since weather conditions and hence the diurnal cycles of climate elements depend on the weather pattern, a selection approach including objective weather patterns (OWP) was developed. The OWP serve as an additional criterion to filter the most similar day. For a case study, EDM was applied to the daily climate data of the stations Dresden and Fichtelberg (Saxony, Germany). The EDM results agree well with the observed data, maintaining their statistics. Hourly results fit better for climate elements with homogenous diurnal cycles, e.g., T with very high correlations of up to 0.99. In contrast, the hourly results of the SD and the WS provide correlations up to 0.79. EDM tends to overestimate heavy precipitation rates, e.g., by up to 15% for Dresden and 26% for Fichtelberg, potentially due to, e.g., the smaller data pool for such events, and the equal-weighted impact of P in the ED calculation. The OWPs lead to somewhat improved results for all climate elements in terms of similar climate conditions of the basic stations. Finally, the performance of EDM is compared with the disaggregation tool MELODIST (Förster et al. 2015). Both tools deliver comparable and well corresponding results. All analyses of the generated hourly data show that EDM is a very robust and flexible model that can be applied to any climate station. Since EDM can disaggregate daily data of climate projections, future research should address whether the model is capable to respect and (re)produce future climate trends. Further, possible improvements by including the flow direction and future OWPs should be investigated, also with regard to reduce the overestimation of heavy rainfall rates.
  • Item
    From Transfer to Knowledge Co-Production: A Transdisciplinary Research Approach to Reduce Black Carbon Emissions in Metro Manila, Philippines
    (Basel : MDPI, 2020) Tõnisson, Liina; Kunz, Yvonne; Kecorius, Simonas; Madueño, Leizel; Tamayo, Everlyn Gayle; Casanova, Dang Marviluz; Zhao, Qi; Schikowski, Tamara; Hornidge, Anna-Katharina; Wiedensohler, Alfred; Macke, Andreas
    Air pollution, which kills an estimated 7 million people every year, is one of the greatest environmental health risks of our times. Finding solutions to this threat poses challenges to practitioners and policymakers alike. Increasing awareness on the benefits of transdisciplinary research in solution-oriented sustainable development projects has led to the establishment of the research project “A Transdisciplinary Approach to Mitigate Emissions of Black Carbon” (TAME-BC). This paper introduces the TAME-BC research setup that took place with Metro Manila, Philippines, case study. The approach integrates BC measurements with technological, socio-political, and health aspects to improve the scientific state of the art, policymaking, transport sector planning, and clinical studies related to air pollution health effects. The first pillar in the setup presents an (1) air quality assessment through aerosol measurements and instrumentation, complemented by a (2) description and assessment of the current policies, technologies, and practices of the transport sector that is responsible for pollution levels in the Philippines, as well as a (3) BC exposure and associated health impacts assessment. The fourth pillar is intercrossing, fostering (4) knowledge co-creation through stakeholder involvement across scales. We argue that this transdisciplinary approach is useful for research endeavors aiming for emission mitigation in rapidly urbanizing regions beyond Metro Manila.
  • Item
    Knowledge Transfer with Citizen Science: Luft-Leipzig Case Study
    (Basel : MDPI, 2021) Tõnisson, Liina; Voigtländer, Jens; Weger, Michael; Assmann, Denise; Käthner, Ralf; Heinold, Bernd; Macke, Andreas
    Community-based participatory research initiatives such as “hackAir”, “luftdaten.info”, “senseBox”, “CAPTOR”, “CurieuzeNeuzen Vlaanderen”, “communityAQ”, and “Healthy Air, Healthier Children” campaign among many others for mitigating short-lived climate pollutants (SLCPs) and improving air quality have reported progressive knowledge transfer results. These research initiatives provide the research community with the practical four-element state-of-the-art method for citizen science. For the preparation-, measurements-, data analysis-, and scientific support-elements that collectively present the novel knowledge transfer method, the Luft-Leipzig project results are presented. This research contributes to science by formulating a novel method for SLCP mitigation projects that employ citizen scientists. The Luft-Leipzig project results are presented to validate the four-element state-of-the-art method. The method is recommended for knowledge transfer purposes beyond the scope of mitigating short-lived climate pollutants (SLCPs) and improving air quality.
  • Item
    Enhanced tenacity of mycobacterial aerosols from necrotic neutrophils
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Pfrommer, E.; Dreier, C.; Gabriel, G.; Dallenga, T.; Reimer, R.; Schepanski, K.; Scherließ, R.; Schaible, U.E.; Gutsmann, T.
    The tuberculosis agent Mycobacterium tuberculosis is primarily transmitted through air, but little is known about the tenacity of mycobacterium-containing aerosols derived from either suspensions or infected neutrophils. Analysis of mycobacterial aerosol particles generated from bacterial suspensions revealed an average aerodynamic diameter and mass density that may allow distant airborne transmission. The volume and mass of mycobacterial aerosol particles increased with elevated relative humidity. To more closely mimic aerosol formation that occurs in active TB patients, aerosols from mycobacterium-infected neutrophils were analysed. Mycobacterium-infected intact neutrophils showed a smaller particle size distribution and lower viability than free mycobacteria. In contrast, mycobacterium-infected necrotic neutrophils, predominant in M. tuberculosis infection, revealed particle sizes and viability rates similar to those found for free mycobacteria, but in addition, larger aggregates of viable mycobacteria were observed. Therefore, mycobacteria are shielded from environmental stresses in multibacillary aggregates generated from necrotic neutrophils, which allows improved tenacity but emphasizes short distance transmission between close contacts.
  • Item
    Author Correction: Enhanced tenacity of mycobacterial aerosols from necrotic neutrophils
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Pfrommer, E.; Dreier, C.; Gabriel, G.; Dallenga, T.; Reimer, R.; Schepanski, K.; Scherließ, R.; Schaible, U.E.; Gutsmann, T.
    The original version of this Article contained errors within the affiliations section. Affiliation 4 was incorrectly given as ‘Leibniz Research Alliance INFECTIONS’21, Leipzig, Germany’. The correct affiliation is listed below: Leibniz Research Alliance INFECTIONS’21, Borstel, 23845, Germany Also, Affiliation 5 was incorrectly given as ‘German Center for Infection Research, TTU-TB, Borstel, 23845, Germany’. The correct affiliation is listed below: German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel, Germany. Finally, the original HTML version of this Article omitted an affiliation for G. Gabriel. The correct affiliations for G. Gabriel are listed below: Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany. Leibniz Research Alliance INFECTIONS’21, Borstel, 23845, Germany. German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel, Germany. These errors have now been corrected in the PDF and HTML versions of the Article.
  • Item
    Variability of Cosmogenic 35S in Rain—Resulting Implications for the Use of Radiosulfur as Natural Groundwater Residence Time Tracer
    (Basel : MDPI, 2020) Schubert, Michael; Knöller, Kay; Tegen, Ina; Terzi, Lucrezia
    Information about groundwater residence times is essential for sustainable groundwater management. Naturally occurring radionuclides are suitable tools for related investigations. While the applicability of several long-lived radionuclides has been demonstrated for the investigation of long residence times (i.e., years, decades, centuries and more), studies that focus on sub-yearly residence times are only scarcely discussed in the literature. This shortage is mainly due to the rather small number of radionuclides that are generally suitable for the purpose and show at the same time adequately short half-lives. A promising innovative approach in this regard applies cosmogenic radiosulfur (35S). 35S is continuously produced in the stratosphere from where it is conveyed to the troposphere or lower atmosphere and finally transferred with the rain to the groundwater. As soon as the meteoric water enters the subsurface, its 35S activity decreases with an 87.4 day half-life, making 35S a suitable time tracer for investigating sub-yearly groundwater ages. However, since precipitation shows a varying 35S activity during the year, setting up a reliable 35S input function is required for sound data evaluation. That calls for (i) an investigation of the long-term variation of the 35S activity in the rain, (ii) the identification of the associated drivers and (iii) an approach for setting up a 35S input function based on easily attainable proxies. The paper discusses 35S activities in the rain recorded over a 12-month period, identifies natural and anthropogenic influences, and suggests an approach for setting up a 35S input function applying 7Be as a pro