Search Results

Now showing 1 - 4 of 4
  • Item
    Selective Construction of C−C and C=C Bonds by Manganese Catalyzed Coupling of Alcohols with Phosphorus Ylides
    (Weinheim : Wiley-VCH Verlag, 2020) Liu X.; Werner T.
    Herein, we report the manganese catalyzed coupling of alcohols with phosphorus ylides. The selectivity in the coupling of primary alcohols with phosphorus ylides to form carbon-carbon single (C−C) and carbon-carbon double (C=C) bonds can be controlled by the ligands. In the conversion of more challenging secondary alcohols with phosphorus ylides the selectivity towards the formation of C−C vs. C=C bonds can be controlled by the reaction conditions, namely the amount of base. The scope and limitations of the coupling reactions were thoroughly evaluated by the conversion of 21 alcohols and 15 ylides. Notably, compared to existing methods, which are based on precious metal complexes as catalysts, the present catalytic system is based on earth abundant manganese catalysts. The reaction can also be performed in a sequential one-pot reaction generating the phosphorus ylide in situ followed manganese catalyzed C−C and C=C bond formation. Mechanistic studies suggest that the C−C bond was generated via a borrowing hydrogen pathway and the C=C bond formation followed an acceptorless dehydrogenative coupling pathway. (Figure presented.). © 2020 The Authors. Advanced Synthesis & Catalysis published by Wiley-VCH GmbH
  • Item
    Synthesis of Molybdenum Pincer Complexes and Their Application in the Catalytic Hydrogenation of Nitriles
    (Weinheim : Wiley-VCH Verlag, 2020) Leischner, Thomas; Spannenberg, Anke; Junge, Kathrin; Beller, Matthias
    A series of molybdenum(0), (I) and (II) complexes ligated by different PNP and NNN pincer ligands were synthesized and structurally characterized. Along with previously described Mo−PNP complexes Mo-1 and Mo-2, all prepared compounds were tested in the catalytic hydrogenation of aromatic nitriles to primary amines. Among the applied catalysts, Mo-1 is particularly well suited for the hydrogenation of electron-rich benzonitriles. Additionally, two aliphatic nitriles were transformed into the desired products in 80 and 86 %, respectively. Moreover, catalytic intermediate Mo-1a was isolated and its role in the catalytic cycle was subsequently demonstrated. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Oxidative Esterification of 5-Hydroxymethylfurfural under Flow Conditions Using a Bimetallic Co/Ru Catalyst
    (Weinheim : Wiley-VCH Verlag, 2020) Salazar, Abel; Linke, Alexander; Eckelt, Reinhard; Quade, Antje; Kragl, Udo; Mejía, Esteban
    Furanic di-carboxylate derivatives of 5-Hydroxymethylfurfural (HMF) are nowadays important in the polymer industry as they are used as building blocks for bio-based polyesters. The high reactivity of HMF compels to avoid harsh synthetic conditions. Therefore, developing mild catalytic processes for its selective oxidation is a challenging task. Herein, we report the first oxidative esterification of HMF to dimethyl furan-2,5-dicarboxylate (FDCM) under flow conditions using oxygen as oxidant. For that purpose, a new series of nitrogen-doped carbon-supported bimetallic Co/Ru heterogeneous catalysts were prepared and characterized by XRD, XPS and N2 physisorption. These analyses revealed that the porosity of the materials and order of impregnation of the metals to the carbon supports lead to varying catalytic activities. Under optimized conditions the flow reactor showed a 15-fold increase on the production of FDCM compared to batch conditions. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Pinning of the Fermi Level in CuFeO2 by Polaron Formation Limiting the Photovoltage for Photochemical Water Splitting
    (Weinheim : Wiley-VCH Verlag, 2020) Hermans Y.; Klein A.; Sarker H.P.; Huda M.N.; Junge H.; Toupance T.; Jaegermann W.
    CuFeO2 is recognized as a potential photocathode for photo(electro)chemical water splitting. However, photocurrents with CuFeO2-based systems are rather low so far. In order to optimize charge carrier separation and water reduction kinetics, defined CuFeO2/Pt, CuFeO2/Ag, and CuFeO2/NiOx(OH)y heterostructures are made in this work through a photodeposition procedure based on a 2H CuFeO2 hexagonal nanoplatelet shaped powder. However, water splitting performance tests in a closed batch photoreactor show that these heterostructured powders exhibit limited water reduction efficiencies. To test whether Fermi level pinning intrinsically limits the water reduction capacity of CuFeO2, the Fermi level tunability in CuFeO2 is evaluated by creating CuFeO2/ITO and CuFeO2/H2O interfaces and analyzing the electronic and chemical properties of the interfaces through photoelectron spectroscopy. The results indicate that Fermi level pinning at the Fe3+/Fe2+ electron polaron formation level may intrinsically prohibit CuFeO2 from acquiring enough photovoltage to reach the water reduction potential. This result is complemented with density functional theory calculations as well. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim