Search Results

Now showing 1 - 10 of 43
  • Item
    Multiple fermion scattering in the weakly coupled spin-chain compound YbAlO3
    (London : Nature Publishing Group, 2021) Nikitin, S.; Nishimoto, S.; Fan, Y.; Wu, J.; Wu, L.; Sukhanov, A.; Brando, M.; Pavlovskii, N.; Xu, J.; Vasylechko, L.; Yu, R.; Podlesnyak, A.
    The Heisenberg antiferromagnetic spin-1/2 chain, originally introduced almost a century ago, is one of the best studied models in quantum mechanics due to its exact solution, but nevertheless it continues to present new discoveries. Its low-energy physics is described by the Tomonaga-Luttinger liquid of spinless fermions, similar to the conduction electrons in one-dimensional metals. In this work we investigate the Heisenberg spin-chain compound YbAlO3 and show that the weak interchain coupling causes Umklapp scattering between the left- and right-moving fermions and stabilizes an incommensurate spin-density wave order at q = 2kF under finite magnetic fields. These Umklapp processes open a route to multiple coherent scattering of fermions, which results in the formation of satellites at integer multiples of the incommensurate fundamental wavevector Q = nq. Our work provides surprising and profound insight into bandstructure control for emergent fermions in quantum materials, and shows how neutron diffraction can be applied to investigate the phenomenon of coherent multiple scattering in metals through the proxy of quantum magnetic systems.
  • Item
    Tumor cytotoxicity and immunogenicity of a novel V-jet neon plasma source compared to the kINPen
    (London : Nature Publishing Group, 2021) Miebach, Lea; Freund, Eric; Horn, Stefan; Niessner, Felix; Sagwal, Sanjeev Kumar; von Woedtke, Thomas; Emmert, Steffen; Weltmann, Klaus-Dieter; Clemen, Ramona; Schmidt, Anke; Gerling, Torsten; Bekeschus, Sander
    Recent research indicated the potential of cold physical plasma in cancer therapy. The plethora of plasma-derived reactive oxygen and nitrogen species (ROS/RNS) mediate diverse antitumor effects after eliciting oxidative stress in cancer cells. We aimed at exploiting this principle using a newly designed dual-jet neon plasma source (Vjet) to treat colorectal cancer cells. A treatment time-dependent ROS/RNS generation induced oxidation, growth retardation, and cell death within 3D tumor spheroids were found. In TUM-CAM, a semi in vivo model, the Vjet markedly reduced vascularized tumors' growth, but an increase of tumor cell immunogenicity or uptake by dendritic cells was not observed. By comparison, the argon-driven single jet kINPen, known to mediate anticancer effects in vitro, in vivo, and in patients, generated less ROS/RNS and terminal cell death in spheroids. In the TUM-CAM model, however, the kINPen was equivalently effective and induced a stronger expression of immunogenic cancer cell death (ICD) markers, leading to increased phagocytosis of kINPen but not Vjet plasma-treated tumor cells by dendritic cells. Moreover, the Vjet was characterized according to the requirements of the DIN-SPEC 91315. Our results highlight the plasma device-specific action on cancer cells for evaluating optimal discharges for plasma cancer treatment.
  • Item
    Author Correction: A combination of electrochemistry and mass spectrometry to monitor the interaction of reactive species with supported lipid bilayers (Scientific Reports, (2020), 10, 1, (18683), 10.1038/s41598-020-75514-7)
    (London : Nature Publishing Group, 2021) Ravandeh, M.; Kahlert, H.; Jablonowski, H.; Lackmann, J.-W.; Striesow, J.; Agmo Hernández, V.; Wende, K.
    Correction to: Scientific Reports https://doi.org/10.1038/s41598-020-75514-7, published online 29 October 2020
  • Item
    Towards tellurium-free thermoelectric modules for power generation from low-grade heat
    (London : Nature Publishing Group, 2021) Ying, Pingjun; He, Ran; Mao, Jun; Zhang, Qihao; Reith, Heiko; Sui, Jiehe; Ren, Zhifeng; Nielsch, Kornelius; Schierning, Gabi
    Thermoelectric technology converts heat into electricity directly and is a promising source of clean electricity. Commercial thermoelectric modules have relied on Bi2Te3-based compounds because of their unparalleled thermoelectric properties at temperatures associated with low-grade heat (<550 K). However, the scarcity of elemental Te greatly limits the applicability of such modules. Here we report the performance of thermoelectric modules assembled from Bi2Te3-substitute compounds, including p-type MgAgSb and n-type Mg3(Sb,Bi)2, by using a simple, versatile, and thus scalable processing routine. For a temperature difference of ~250 K, whereas a single-stage module displayed a conversion efficiency of ~6.5%, a module using segmented n-type legs displayed a record efficiency of ~7.0% that is comparable to the state-of-the-art Bi2Te3-based thermoelectric modules. Our work demonstrates the feasibility and scalability of high-performance thermoelectric modules based on sustainable elements for recovering low-grade heat.
  • Item
    Optoregulated force application to cellular receptors using molecular motors
    (London : Nature Publishing Group, 2021) Zheng, Yijun; Han, Mitchell K.L.; Zhao, Renping; Blass, Johanna; Zhang, Jingnan; Zhou, Dennis W.; Colard-Itté, Jean-Rémy; Dattler, Damien; Çolak, Arzu; Hoth, Markus; García, Andrés J.; Qu, Bin; Bennewitz, Roland; Giuseppone, Nicolas; del Campo, Aránzazu
    Progress in our understanding of mechanotransduction events requires noninvasive methods for the manipulation of forces at molecular scale in physiological environments. Inspired by cellular mechanisms for force application (i.e. motor proteins pulling on cytoskeletal fibers), we present a unique molecular machine that can apply forces at cell-matrix and cell-cell junctions using light as an energy source. The key actuator is a light-driven rotatory molecular motor linked to polymer chains, which is intercalated between a membrane receptor and an engineered biointerface. The light-driven actuation of the molecular motor is converted in mechanical twisting of the entangled polymer chains, which will in turn effectively “pull” on engaged cell membrane receptors (e.g., integrins, T cell receptors) within the illuminated area. Applied forces have physiologically-relevant magnitude and occur at time scales within the relevant ranges for mechanotransduction at cell-friendly exposure conditions, as demonstrated in force-dependent focal adhesion maturation and T cell activation experiments. Our results reveal the potential of nanomotors for the manipulation of living cells at the molecular scale and demonstrate a functionality which at the moment cannot be achieved by other technologies for force application.
  • Item
    Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities
    (London : Nature Publishing Group, 2022) Cinner, Joshua E; Caldwell, Iain R; Thiault, Lauric; Ben, John; Blanchard, Julia L; Coll, Marta; Diedrich, Amy; Eddy, Tyler D; Everett, Jason D; Folberth, Christian; Gascuel, Didier; Guiet, Jerome; Gurney, Georgina G; Heneghan, Ryan F; Jägermeyr, Jonas; Jiddawi, Narriman; Lahari, Rachael; Kuange, John; Liu, Wenfeng; Maury, Olivier; Müller, Christoph; Novaglio, Camilla; Palacios-Abrantes, Juliano; Petrik, Colleen M; Rabearisoa, Ando; Tittensor, Derek P; Wamukota, Andrew; Pollnac, Richard
    Climate change is expected to profoundly affect key food production sectors, including fisheries and agriculture. However, the potential impacts of climate change on these sectors are rarely considered jointly, especially below national scales, which can mask substantial variability in how communities will be affected. Here, we combine socioeconomic surveys of 3,008 households and intersectoral multi-model simulation outputs to conduct a sub-national analysis of the potential impacts of climate change on fisheries and agriculture in 72 coastal communities across five Indo-Pacific countries (Indonesia, Madagascar, Papua New Guinea, Philippines, and Tanzania). Our study reveals three key findings: First, overall potential losses to fisheries are higher than potential losses to agriculture. Second, while most locations (> 2/3) will experience potential losses to both fisheries and agriculture simultaneously, climate change mitigation could reduce the proportion of places facing that double burden. Third, potential impacts are more likely in communities with lower socioeconomic status.
  • Item
    Experimental proof of Joule heating-induced switched-back regions in OLEDs
    (London : Nature Publishing Group, 2020) Kirch, Anton; Fische, Axel; Liero, Matthias; Fuhrmann, JĂĽrgen; Glitzky, Annegret; Reineke, Sebastian
    Organic light-emitting diodes (OLEDs) have become a major pixel technology in the display sector, with products spanning the entire range of current panel sizes. The ability to freely scale the active area to large and random surfaces paired with flexible substrates provides additional application scenarios for OLEDs in the general lighting, automotive, and signage sectors. These applications require higher brightness and, thus, current density operation compared to the specifications needed for general displays. As extended transparent electrodes pose a significant ohmic resistance, OLEDs suffering from Joule self-heating exhibit spatial inhomogeneities in electrical potential, current density, and hence luminance. In this article, we provide experimental proof of the theoretical prediction that OLEDs will display regions of decreasing luminance with increasing driving current. With a two-dimensional OLED model, we can conclude that these regions are switched back locally in voltage as well as current due to insufficient lateral thermal coupling. Experimentally, we demonstrate this effect in lab-scale devices and derive that it becomes more severe with increasing pixel size, which implies its significance for large-area, high-brightness use cases of OLEDs. Equally, these non-linear switching effects cannot be ignored with respect to the long-term operation and stability of OLEDs; in particular, they might be important for the understanding of sudden-death scenarios. © 2020, The Author(s).
  • Item
    Author Correction: Surface acoustic wave nebulization improves compound selectivity of low-temperature plasma ionization for mass spectrometry
    (London : Nature Publishing Group, 2021) Kiontke, Andreas; Roudini, Mehrzad; Billig, Susan; Fakhfouri, Armaghan; Winkler, Andreas; Birkemeyer, Claudia
    Correction to: Scientific Reports https://doi.org/10.1038/s41598-021-82423-w, published online 03 February 2021
  • Item
    Rapid and low-cost insect detection for analysing species trapped on yellow sticky traps
    (London : Nature Publishing Group, 2021) Böckmann, Elias; Pfaff, Alexander; Schirrmann, Michael; Pflanz, Michael
    While insect monitoring is a prerequisite for precise decision-making regarding integrated pest management (IPM), it is time- and cost-intensive. Low-cost, time-saving and easy-to-operate tools for automated monitoring will therefore play a key role in increased acceptance and application of IPM in practice. In this study, we tested the differentiation of two whitefly species and their natural enemies trapped on yellow sticky traps (YSTs) via image processing approaches under practical conditions. Using the bag of visual words (BoVW) algorithm, accurate differentiation between both natural enemies and the Trialeurodes vaporariorum and Bemisia tabaci species was possible, whereas the procedure for B. tabaci could not be used to differentiate this species from T. vaporariorum. The decay of species was considered using fresh and aged catches of all the species on the YSTs, and different pooling scenarios were applied to enhance model performance. The best performance was reached when fresh and aged individuals were used together and the whitefly species were pooled into one category for model training. With an independent dataset consisting of photos from the YSTs that were placed in greenhouses and consequently with a naturally occurring species mixture as the background, a differentiation rate of more than 85% was reached for natural enemies and whiteflies.
  • Item
    Nematic fluctuations in iron-oxychalcogenide Mott insulators
    (London : Nature Publishing Group, 2021) Freelon, B.; Sarkar, R.; Kamusella, S.; BrĂĽckner, F.; Grinenko, V.; Acharya, Swagata; Laad, Mukul; Craco, Luis; Yamani, Zahra; Flacau, Roxana; Swainson, Ian; Frandsen, Benjamin; Birgeneau, Robert; Liu, Yuhao; Karki, Bhupendra; Alfailakawi, Alaa; Neuefeind, Joerg C.; Everett, Michelle; Wang, Hangdong; Xu, Binjie; Fang, Minghu; Klauss, H.-H.
    Nematic fluctuations occur in a wide range physical systems from biological molecules to cuprates and iron pnictide high-Tc superconductors. It is unclear whether nematicity in pnictides arises from electronic spin or orbital degrees of freedom. We studied the iron-based Mott insulators La2O2Fe2OM2M = (S, Se), which are structurally similar to pnictides. Nuclear magnetic resonance revealed a critical slowing down of nematic fluctuations and complementary Mössbauerr spectroscopy data showed a change of electrical field gradient. The neutron pair distribution function technique detected local C2 fluctuations while neutron diffraction indicates that global C4 symmetry is preserved. A geometrically frustrated Heisenberg model with biquadratic and single-ion anisotropic terms provides the interpretation of the low temperature magnetic fluctuations. The nematicity is not due to spontaneous orbital order, instead it is linked to geometrically frustrated magnetism based on orbital selectivity. This study highlights the interplay between orbital order and spin fluctuations in nematicity.