Search Results

Now showing 1 - 10 of 44
  • Item
    Light-Driven Proton Transfer for Cyclic and Temporal Switching of Enzymatic Nanoreactors
    (Weinheim : Wiley-VCH, 2020) Moreno, Silvia; Sharan, Priyanka; Engelke, Johanna; Gumz, Hannes; Boye, Susanne; Oertel, Ulrich; Wang, Peng; Banerjee, Susanta; Klajn, Rafal; Voit, Brigitte; Lederer, Albena; Appelhans, Dietmar
    Temporal activation of biological processes by visible light and subsequent return to an inactive state in the absence of light is an essential characteristic of photoreceptor cells. Inspired by these phenomena, light-responsive materials are very attractive due to the high spatiotemporal control of light irradiation, with light being able to precisely orchestrate processes repeatedly over many cycles. Herein, it is reported that light-driven proton transfer triggered by a merocyanine-based photoacid can be used to modulate the permeability of pH-responsive polymersomes through cyclic, temporally controlled protonation and deprotonation of the polymersome membrane. The membranes can undergo repeated light-driven swelling-contraction cycles without losing functional effectiveness. When applied to enzyme loaded-nanoreactors, this membrane responsiveness is used for the reversible control of enzymatic reactions. This combination of the merocyanine-based photoacid and pH-switchable nanoreactors results in rapidly responding and versatile supramolecular systems successfully used to switch enzymatic reactions ON and OFF on demand.
  • Item
    Thiophene-Bridged Donor–Acceptor sp2-Carbon-Linked 2D Conjugated Polymers as Photocathodes for Water Reduction
    (Weinheim : Wiley-VCH, 2021) Xu, Shunqi; Sun, Hanjun; Addicoat, Matthew; Biswal, Bishnu P.; He, Fan; Park, SangWook; Paasch, Silvia; Zhang, Tao; Sheng, Wenbo; Brunner, Eike; Hou, Yang; Richter, Marcus; Feng, Xinliang
    Photoelectrochemical (PEC) water reduction, converting solar energy into environmentally friendly hydrogen fuel, requires delicate design and synthesis of semiconductors with appropriate bandgaps, suitable energy levels of the frontier orbitals, and high intrinsic charge mobility. In this work, the synthesis of a novel bithiophene-bridged donor–acceptor-based 2D sp2-carbon-linked conjugated polymer (2D CCP) is demonstrated. The Knoevenagel polymerization between the electron-accepting building block 2,3,8,9,14,15-hexa(4-formylphenyl) diquinoxalino[2,3-a:2′,3′-c]phenazine (HATN-6CHO) and the first electron-donating linker 2,2′-([2,2′-bithiophene]-5,5′-diyl)diacetonitrile (ThDAN) provides the 2D CCP-HATNThDAN (2D CCP-Th). Compared with the corresponding biphenyl-bridged 2D CCP-HATN-BDAN (2D CCP-BD), the bithiophene-based 2D CCP-Th exhibits a wide light-harvesting range (up to 674 nm), a optical energy gap (2.04 eV), and highest energy occupied molecular orbital–lowest unoccupied molecular orbital distributions for facilitated charge transfer, which make 2D CCP-Th a promising candidate for PEC water reduction. As a result, 2D CCP-Th presents a superb H2-evolution photocurrent density up to ≈7.9 µA cm−2 at 0 V versus reversible hydrogen electrode, which is superior to the reported 2D covalent organic frameworks and most carbon nitride materials (0.09–6.0 µA cm−2). Density functional theory calculations identify the thiophene units and cyano substituents at the vinylene linkage as active sites for the evolution of H2. © 2020 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Poly(3-hexylthiophene)s Functionalized with N-Heterocyclic Carbenes as Robust and Conductive Ligands for the Stabilization of Gold Nanoparticles
    (Weinheim : Wiley-VCH, 2020) Sun, Ningwei; Zhang, Shi-Tong; Simon, Frank; Steiner, Anja Maria; Schubert, Jonas; Du, Yixuan; Qiao, Zhi; Fery, Andreas; Lissel, Franziska
    Recently, N-heterocyclic carbenes (NHCs) are explored as anchor groups to bind organic ligands to colloidal gold (i.e. gold nanoparticles, Au NPs), yet these efforts are confined to non-conjugated ligands so far—that is, focused solely on exploiting the stability aspect. Using NHCs to link Au NPs and electronically active organic components, for example, conjugated polymers (CPs), will allow capitalizing on both the stability as well as the inherent conductivity of the NHC anchors. Here, we report three types of Br-NHC-Au-X (X=Cl, Br) complexes, which, when used as starting points for Kumada polymerizations, yield regioregular poly(3-hexylthiophenes)-NHC-Au (P3HTs-NHC-Au) with narrow molecular weight distributions. The corresponding NPs are obtained via direct reduction and show excellent thermal as well as redox stability. The NHC anchors enable electron delocalization over the gold/CP interface, resulting in an improved electrochromic response behavior in comparison with P3HT-NHC-Au. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    AB- Versus AA+BB-Suzuki Polycondensation: A Palladium/Tris(tert-butyl)phosphine Catalyst Can Outperform Conventional Catalysts
    (Weinheim : Wiley-VCH, 2020) Zhang, Kenan; Tkachov, Roman; Ditte, Kristina; Kiriy, Nataliya; Kiriy, Anton; Voit, Brigitte
    A Pd/Pt-Bu3 catalyst having bulky, electron-rich ligands significantly outperforms conventional “step-growth catalysts” Pd(PPh3)4 and Pd(Po-Tol3)3 in the Suzuki polycondensation of the AB-type arylene-based monomers, such as some of the substituted fluorenes, carbazoles, and phenylenes. In the AA+BB polycondensation, Pd/Pt-Bu3 also performs better under homogeneous reaction conditions, in combination with the organic base Et4NOH. The superior performance of Pd/Pt-Bu3 is discussed in terms of its higher reactivity in the oxidative addition step and inherent advantages of the intramolecular catalyst transfer, which is a key step joining catalytic cycles of the AB-polycondensation. These findings are applied to the synthesis of a carbazole-based copolymer designed for the use as a hole conductor in solution-processed organic light-emitting diodes. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    Ultrasoft and High-Mobility Block Copolymers for Skin-Compatible Electronics
    (Weinheim : Wiley-VCH, 2020) Ditte, Kristina; Perez, Jonathan; Chae, Soosang; Hambsch, Mike; Al-Hussein, Mahmoud; Komber, Hartmut; Formanek, Peter; Mannsfeld, Stefan C.B.; Fery, Andreas; Kiriy, Anton; Lissel, Franziska
    Polymer semiconductors (PSCs) are an essential component of organic field-effect transistors (OFETs), but their potential for stretchable electronics is limited by their brittleness and failure susceptibility upon strain. Herein, a covalent connection of two state-of-the-art polymers—semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) and elastomeric poly(dimethylsiloxane) (PDMS)—in a single triblock copolymer (TBC) chain is reported, which enables high charge carrier mobility and low modulus in one system. Three TBCs containing up to 65 wt% PDMS were obtained, and the TBC with 65 wt% PDMS content exhibits mobilities up to 0.1 cm2 V−1 s−1, in the range of the fully conjugated reference polymer PDPP-TT (0.7 cm2 V−1 s−1). The TBC is ultrasoft with a low elastic modulus (5 MPa) in the range of mammalian tissue. The TBC exhibits an excellent stretchability and extraordinary durability, fully maintaining the initial electric conductivity in a doped state after 1500 cycles to 50% strain. © 2020 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Screening Arrays of Laminin Peptides on Modified Cellulose for Promotion of Adhesion of Primary Endothelial and Neural Precursor Cells
    (Weinheim : Wiley-VCH, 2021) Wetzel, Richard; Hauser, Sandra; Lin, Weilin; Berg, Peggy; Werner, Carsten; Pietzsch, Jens; Kempermann, Gerd; Zhang, Yixin
    Neural precursor cells (NPC) are primary cells intensively used in the context of research on adult neurogenesis and modeling of neuronal development in health and diseased states. Substrates that can facilitate NPC adhesion will be very useful for culturing these cells. Due to the presence of laminin in basal lamina as well as their involvement in differentiation, migration, and adhesion of many types of cells, surfaces modified with laminin-derived peptides are focused upon and compared with the widely used fibronectin-derived Arg-Gly-Asp (RGD) peptides. An array of 46 peptides is synthesized on cellulose paper (SPOT) to identify laminin-derived peptides that promote short-term adhesion of murine NPC and human primary endothelial cells. Various previously reported peptide sequences are re-evaluated in this work. Initial adhesion experiments show NPC preferred several laminin-derived peptides by up to 5-time higher cell numbers, compared to the well-known promiscuous integrin binding RGD peptide. Importantly, screening of cell adhesion has revealed a synergetic effect of filamentous matrix, peptide sequence, surface property, ligand density, and the dynamic process of NPC adhesion. © The Authors. Advanced Biology published by Wiley-VCH GmbH
  • Item
    Prospects of Coupled Organic-Inorganic Nanostructures for Charge and Energy Transfer Applications
    (Weinheim : Wiley-VCH, 2021) Steiner, Anja Maria; Lissel, Franziska; Fery, Andreas; Lauth, Jannika; Scheele, Marcus
    We review the field of organic–inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. We discuss the physical chemistry of the most common organic and inorganic components. Based on those we derive synthesis and assembly strategies and design criteria on material and device level with a focus on photovoltaics, spin memories or optical upconverters. We conclude that future research in the field should be directed towards an improved understanding of the binding motif and molecular orientation at the hybrid interface. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Sequentially Processed P3HT/CN6-CP•−NBu4+ Films: Interfacial or Bulk Doping?
    (Weinheim : Wiley-VCH, 2020) Karpov, Yevhen; Kiriy, Nataliya; Formanek, Petr; Hoffmann, Cedric; Beryozkina, Tetyana; Hambsch, Mike; Al-Hussein, Mahmoud; Mannsfeld, Stefan C.B.; Büchner, Bernd; Debnath, Bipasha; Bretschneider, Michael; Krupskaya, Yulia; Lissel, Franziska; Kiriy, Anton
    Derivatives of the hexacyano-[3]-radialene anion radical (CN6-CP•−) emerge as a promising new family of p-dopants having a doping strength comparable to that of archetypical dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ). Here, mixed solution (MxS) and sequential processing (SqP) doping methods are compared by using a model semiconductor poly(3-hexylthiophene) (P3HT) and the dopant CN6-CP•−NBu4 + (NBu4 + = tetrabutylammonium). MxS films show a moderate yet thickness-independent conductivity of ≈0.1 S cm−1. For the SqP case, the highest conductivity value of ≈6 S cm−1 is achieved for the thinnest (1.5–3 nm) films whereas conductivity drops two orders of magnitudes for 100 times thicker films. These results are explained in terms of an interfacial doping mechanism realized in the SqP films, where only layers close to the P3HT/dopant interface are doped efficiently, whereas internal P3HT layers remain essentially undoped. This structure is in agreement with transmission electron microscopy, atomic force microscopy, and Kelvin probe force microscopy results. The temperature-dependent conductivity measurements reveal a lower activation energy for charge carriers in SqP samples than in MxS films (79 meV vs 110 meV), which could be a reason for their superior conductivity. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Multivalent Protein-Loaded pH-Stable Polymersomes: First Step toward Protein Targeted Therapeutics
    (Weinheim : Wiley-VCH, 2021) Moreno, Silvia; Boye, Susanne; Ajeilat, Hane George Al; Michen, Susanne; Tietze, Stefanie; Voit, Brigitte; Lederer, Albena; Temme, Achim; Appelhans, Dietmar
    Synthetic platforms for mimicking artificial organelles or for designing multivalent protein therapeutics for targeting cell surface, extracellular matrix, and tissues are in the focus of this study. Furthermore, the availability of a multi-functionalized and stimuli-responsive carrier system is required that can be used for sequential in situ and/or post loading of different proteins combined with post-functionalization steps. Until now, polymersomes exhibit excellent key characteristics to fulfill those requirements, which allow specific transport of proteins and the integration of proteins in different locations of polymeric vesicles. Herein, different approaches to fabricate multivalent protein-loaded, pH-responsive, and pH-stable polymersomes are shown, where a combination of therapeutic action and targeting can be achieved, by first choosing two model proteins such as human serum albumin and avidin. Validation of the molecular parameters of the multivalent biohybrids is performed by dynamic light scattering, cryo-TEM, fluorescence spectroscopy, and asymmetrical flow-field flow fractionation combined with light scattering techniques. To demonstrate targeting functions of protein-loaded polymersomes, avidin post-functionalized polymersomes are used for the molecular recognition of biotinylated cell surface receptors. These versatile protein-loaded polymersomes present new opportunities for designing sophisticated biomolecular nanoobjects in the field of (extracellular matrix) protein therapeutics.
  • Item
    Toward Artificial Mussel-Glue Proteins: Differentiating Sequence Modules for Adhesion and Switchable Cohesion
    (Weinheim : Wiley-VCH, 2020) Arias, Sandra; Amini, Shahrouz; Horsch, Justus; Pretzler, Matthias; Rompel, Annette; Melnyk, Inga; Sychev, Dmitrii; Fery, Andreas; Börner, Hans G.
    Artificial mussel-glue proteins with pH-triggered cohesion control were synthesized by extending the tyrosinase activated polymerization of peptides to sequences with specific modules for cohesion control. The high propensity of these sequence sections to adopt β-sheets is suppressed by switch defects. This allows enzymatic activation and polymerization to proceed undisturbed. The β-sheet formation is regained after polymerization by changing the pH from 5.5 to 6.8, thereby triggering O→N acyl transfer rearrangements that activate the cohesion mechanism. The resulting artificial mussel glue proteins exhibit rapid adsorption on alumina surfaces. The coatings resist harsh hypersaline conditions, and reach remarkable adhesive energies of 2.64 mJ m−2 on silica at pH 6.8. In in situ switch experiments, the minor pH change increases the adhesive properties of a coating by 300 % and nanoindentation confirms the cohesion mechanism to improve bulk stiffness by around 200 %. © 2020 The Authors. Published by Wiley-VCH GmbH