Search Results

Now showing 1 - 2 of 2
  • Item
    Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance
    (Basingstoke : Nature Publishing Group, 2023) Gallop, Nathaniel. P.; Maslennikov, Dmitry R.; Mondal, Navendu; Goetz, Katelyn P.; Dai, Zhenbang; Schankler, Aaron M.; Sung, Woongmo; Nihonyanagi, Satoshi; Tahara, Tahei; Bodnarchuk, Maryna I.; Kovalenko, Maksym V.; Vaynzof, Yana; Rappe, Andrew M.; Bakulin, Artem A.
    Vibrational control (VC) of photochemistry through the optical stimulation of structural dynamics is a nascent concept only recently demonstrated for model molecules in solution. Extending VC to state-of-the-art materials may lead to new applications and improved performance for optoelectronic devices. Metal halide perovskites are promising targets for VC due to their mechanical softness and the rich array of vibrational motions of both their inorganic and organic sublattices. Here, we demonstrate the ultrafast VC of FAPbBr3 perovskite solar cells via intramolecular vibrations of the formamidinium cation using spectroscopic techniques based on vibrationally promoted electronic resonance. The observed short (~300 fs) time window of VC highlights the fast dynamics of coupling between the cation and inorganic sublattice. First-principles modelling reveals that this coupling is mediated by hydrogen bonds that modulate both lead halide lattice and electronic states. Cation dynamics modulating this coupling may suppress non-radiative recombination in perovskites, leading to photovoltaics with reduced voltage losses.
  • Item
    Observation of giant spin-split Fermi-arc with maximal Chern number in the chiral topological semimetal PtGa
    (London : Nature Publishing Group, 2020) Yao, M.; Manna, K.; Yang, Q.; Fedorov, A.; Voroshnin, V.; Valentin Schwarze, B.; Hornung, J.; Chattopadhyay, S.; Sun, Z.; Guin, S.N.; Wosnitza, J.; Borrmann, H.; Shekhar, C.; Kumar, N.; Fink, J.; Sun, Y.; Felser, C.
    Non-symmorphic chiral topological crystals host exotic multifold fermions, and their associated Fermi arcs helically wrap around and expand throughout the Brillouin zone between the high-symmetry center and surface-corner momenta. However, Fermi-arc splitting and realization of the theoretically proposed maximal Chern number rely heavily on the spin-orbit coupling (SOC) strength. In the present work, we investigate the topological states of a new chiral crystal, PtGa, which has the strongest SOC among all chiral crystals reported to date. With a comprehensive investigation using high-resolution angle-resolved photoemission spectroscopy, quantum-oscillation measurements, and state-of-the-art ab initio calculations, we report a giant SOC-induced splitting of both Fermi arcs and bulk states. Consequently, this study experimentally confirms the realization of a maximal Chern number equal to ±4 in multifold fermionic systems, thereby providing a platform to observe large-quantized photogalvanic currents in optical experiments.