Search Results

Now showing 1 - 2 of 2
  • Item
    Orders of magnitude loss reduction in photonic bandgap fibers by engineering the core surround
    (Washington, DC : Soc., 2021) Upendar, S.; Ando, R.F.; Schmidt, M.A.; Weiss, T.
    We demonstrate how to reduce the loss in photonic bandgap fibers by orders of magnitude by varying the radius of the corner strands in the core surround. As a fundamental working principle we find that changing the corner strand radius can lead to backscattering of light into the fiber core. Selecting an optimal corner strand radius can thus reduce the loss of the fundamental core mode in a specific wavelength range by almost two orders of magnitude when compared to an unmodified cladding structure. Using the optimal corner radius for each transmission window, we observe the low-loss behavior for the first and second bandgaps, with the losses in the second bandgap being even lower than that of the first one. Our approach of reducing the confinement loss is conceptually applicable to all kinds of photonic bandgap fibers including hollow core and all-glass fibers as well as on-chip light cages. Therefore, our concept paves the way to low-loss light guidance in such systems with substantially reduced fabrication complexity.
  • Item
    Correcting systematic errors by hybrid 2D correlation loss functions in nonlinear inverse modelling
    (San Francisco, California, US : PLOS, 2023) Mayerhöfer, Thomas G.; Noda, Isao; Pahlow, Susanne; Heintzmann, Rainer; Popp, Jürgen
    Recently a new family of loss functions called smart error sums has been suggested. These loss functions account for correlations within experimental data and force modeled data to obey these correlations. As a result, multiplicative systematic errors of experimental data can be revealed and corrected. The smart error sums are based on 2D correlation analysis which is a comparably recent methodology for analyzing spectroscopic data that has found broad application. In this contribution we mathematically generalize and break down this methodology and the smart error sums to uncover the mathematic roots and simplify it to craft a general tool beyond spectroscopic modelling. This reduction also allows a simplified discussion about limits and prospects of this new method including one of its potential future uses as a sophisticated loss function in deep learning. To support its deployment, the work includes computer code to allow reproduction of the basic results.