Search Results

Now showing 1 - 7 of 7
  • Item
    Semitransparent Perovskite Solar Cells with an Evaporated Ultra-Thin Perovskite Absorber
    (Weinheim : Wiley-VCH, 2023) Zhang, Zongbao; Ji, Ran; Jia, Xiangkun; Wang, Shu‐Jen; Deconinck, Marielle; Siliavka, Elena; Vaynzof, Yana
    Metal halide perovskites are of great interest for application in semitransparent solar cells due to their tunable bandgap and high performance. However, fabricating high-efficiency perovskite semitransparent devices with high average visible transmittance (AVT) is challenging because of their high absorption coefficient. Here, a co-evaporation process is adopted to fabricate ultra-thin CsPbI3 perovskite films. The smooth surface and orientated crystal growth of the evaporated perovskite films make it possible to achieve 10 nm thin films with compact and continuous morphology without pinholes. When integrated into a p-i-n device structure of glass/ITO/PTAA/perovskite/PCBM/BCP/Al/Ag with an optimized transparent electrode, these ultra-thin layers result in an impressive open-circuit voltage (VOC) of 1.08 V and a fill factor (FF) of 80%. Consequently, a power conversion efficiency (PCE) of 3.6% with an AVT above 50% is demonstrated, which is the first report for a perovskite device of a 10 nm active layer thickness with high VOC, FF and AVT. These findings demonstrate that deposition by thermal evaporation makes it possible to form compact ultra-thin perovskite films, which are of great interest for future smart windows, light-emitting diodes, and tandem device applications.
  • Item
    Heterobimetallic conducting polymers based on salophen complexes via electrosynthesis
    (London [u.a.] : RSC, 2023) Bia, Francesca; Gualandi, Isacco; Griebel, Jan; Rasmussen, Leon; Hallak, Bassam; Tonelli, Domenica; Kersting, Berthold
    In this work, we report the first electrochemical synthesis of two copolymeric bimetallic conducting polymers by a simple anodic electropolymerization method. The adopted precursors are electroactive transition metal (M = Ni, Cu and Fe) salophen complexes, which can be easily obtained by direct chemical synthesis. The resulting films, labeled poly-NiCu and poly-CuFe, were characterized by cyclic voltammetry in both organic and aqueous media, attenuated total reflectance Fourier transform infrared spectroscopy, UV-vis spectroscopy, scanning electron microscopy, and coupled energy dispersive X-ray spectroscopy. The films are conductive and exhibit great electrochemical stability in both organic and aqueous media (resistant over 100 cycles without significant loss in current response or changes in electrochemical behavior), which makes them good candidates for an array of potential applications. Electrochemical detection of ascorbic acid was performed using both materials.
  • Item
    Influence of chemical interactions on the electronic properties of BiOI/organic semiconductor heterojunctions for application in solution-processed electronics
    (London [u.a.] : RSC, 2023) Lapalikar, Vaidehi; Dacha, Preetam; Hambsch, Mike; Hofstetter, Yvonne J.; Vaynzof, Yana; Mannsfeld, Stefan C. B.; Ruck, Michael
    Bismuth oxide iodide (BiOI) has been viewed as a suitable environmentally-friendly alternative to lead-halide perovskites for low-cost (opto-)electronic applications such as photodetectors, phototransistors and sensors. To enable its incorporation in these devices in a convenient, scalable, and economical way, BiOI thin films were investigated as part of heterojunctions with various p-type organic semiconductors (OSCs) and tested in a field-effect transistor (FET) configuration. The hybrid heterojunctions, which combine the respective functionalities of BiOI and the OSCs were processed from solution under ambient atmosphere. The characteristics of each of these hybrid systems were correlated with the physical and chemical properties of the respective materials using a concept based on heteropolar chemical interactions at the interface. Systems suitable for application in lateral transport devices were identified and it was demonstrated how materials in the hybrids interact to provide improved and synergistic properties. These indentified heterojunction FETs are a first instance of successful incorporation of solution-processed BiOI thin films in a three-terminal device. They show a significant threshold voltage shift and retained carrier mobility compared to pristine OSC devices and open up possibilities for future optoelectronic applications.
  • Item
    Remarkable performance recovery in highly defective perovskite solar cells by photo-oxidation
    (London [u.a.] : RSC, 2023) Goetz, Katelyn P.; Thome, Fabian T. F.; An, Qingzhi; Hofstetter, Yvonne J.; Schramm, Tim; Yangui, Aymen; Kiligaridis, Alexander; Loeffler, Markus; Taylor, Alexander D.; Scheblykin, Ivan G.; Vaynzof, Yana
    Exposure to environmental factors is generally expected to cause degradation in perovskite films and solar cells. Herein, we show that films with certain defect profiles can display the opposite effect, healing upon exposure to oxygen under illumination. We tune the iodine content of methylammonium lead triiodide perovskite from understoichiometric to overstoichiometric and expose them to oxygen and light prior to the addition of the top layers of the device, thereby examining the defect dependence of their photooxidative response in the absence of storage-related chemical processes. The contrast between the photovoltaic properties of the cells with different defects is stark. Understoichiometric samples indeed degrade, demonstrating performance at 33% of their untreated counterparts, while stoichiometric samples maintain their performance levels. Surprisingly, overstoichiometric samples, which show low current density and strong reverse hysteresis when untreated, heal to maximum performance levels (the same as untreated, stoichiometric samples) upon the photooxidative treatment. A similar, albeit smaller-scale, effect is observed for triple cation and methylammonium-free compositions, demonstrating the general application of this treatment to state-of-the-art compositions. We examine the reasons behind this response by a suite of characterization techniques, finding that the performance changes coincide with microstructural decay at the crystal surface, reorientation of the bulk crystal structure for the understoichiometric cells, and a decrease in the iodine-to-lead ratio of all films. These results indicate that defect engineering is a powerful tool to manipulate the stability of perovskite solar cells.
  • Item
    Lateral Selective SiGe Growth for Local Dislocation-Free SiGe-on-Insulator Virtual Substrate Fabrication
    (Pennington, NJ : ECS, 2023) Anand, K.; Schubert, M.A.; Corley-Wiciak, A.A.; Spirito, D.; Corley-Wiciak, C.; Klesse, W.M.; Mai, A.; Tillack, B.; Yamamoto, Y.
    Dislocation free local SiGe-on-insulator (SGOI) virtual substrate is fabricated using lateral selective SiGe growth by reduced pressure chemical vapor deposition. The lateral selective SiGe growth is performed around a ∼1.25 μm square Si (001) pillar in a cavity formed by HCl vapor phase etching of Si at 850 °C from side of SiO2/Si mesa structure on buried oxide. Smooth root mean square roughness of SiGe surface of 0.14 nm, which is determined by interface roughness between the sacrificially etched Si and the SiO2 cap, is obtained. Uniform Ge content of ∼40% in the laterally grown SiGe is observed. In the Si pillar, tensile strain of ∼0.65% is found which could be due to thermal expansion difference between SiO2 and Si. In the SiGe, tensile strain of ∼1.4% along 〈010〉 direction, which is higher compared to that along 〈110〉 direction, is observed. The tensile strain is induced from both [110] and [−110] directions. Threading dislocations in the SiGe are located only ∼400 nm from Si pillar and stacking faults are running towards 〈110〉 directions, resulting in the formation of a wide dislocation-free area in SiGe along 〈010〉 due to horizontal aspect ratio trapping.
  • Item
    A Holistic Solution to Icing by Acoustic Waves: De-Icing, Active Anti-Icing, Sensing with Piezoelectric Crystals, and Synergy with Thin Film Passive Anti-Icing Solutions
    (Weinheim : Wiley-VCH, 2023) del Moral, Jaime; Montes, Laura; Rico‐Gavira, Victor Joaquin; López‐Santos, Carmen; Jacob, Stefan; Oliva‐Ramirez, Manuel; Gil‐Rostra, Jorge; Fakhfouri, Armaghan; Pandey, Shilpi; Gonzalez del Val, Miguel; Mora, Julio; García‐Gallego, Paloma; Ibáñez‐Ibáñez, Pablo Francisco; Rodríguez‐Valverde, Miguel Angel; Winkler, Andreas; Borrás, Ana; González‐Elipe, Agustin Rodriguez
    Icing has become a hot topic both in academia and in the industry given its implications in transport, wind turbines, photovoltaics, and telecommunications. Recently proposed de-icing solutions involving the propagation of acoustic waves (AWs) at suitable substrates may open the path for a sustainable alternative to standard de-icing or anti-icing procedures. Herein, the fundamental interactions are unraveled that contribute to the de-icing and/or hinder the icing on AW-activated substrates. The response toward icing of a reliable model system consisting of a piezoelectric plate activated by extended electrodes is characterized at a laboratory scale and in an icing wind tunnel under realistic conditions. Experiments show that surface modification with anti-icing functionalities provides a synergistic response when activated with AWs. A thoughtful analysis of the resonance frequency dependence on experimental variables such as temperature, ice formation, or wind velocity demonstrates the application of AW devices for real-time monitoring of icing processes.
  • Item
    Light-Regulated Pro-Angiogenic Engineered Living Materials
    (Weinheim : Wiley-VCH, 2023) Dhakane, Priyanka; Tadimarri, Varun Sai; Sankaran, Shrikrishnan
    Regenerative medicine aims to restore damaged cells, tissues, and organs, for which growth factors are vital to stimulate regenerative cellular transformations. Major advances have been made in growth factor engineering and delivery like the development of robust peptidomimetics and controlled release matrices. However, their clinical applicability remains limited due to their poor stability in the body and need for careful regulation of their local concentration to avoid unwanted side-effects. In this study, a strategy to overcome these limitations is explored using engineered living materials (ELMs), which contain live microorganisms that can be programmed with stimuli-responsive functionalities. Specifically, the development of an ELM that releases a pro-angiogenic protein in a light-regulated manner is described. This is achieved by optogenetically engineering bacteria to synthesize and secrete a vascular endothelial growth factor peptidomimetic (QK) linked to a collagen-binding domain. The bacteria are securely encapsulated in bilayer hydrogel constructs that support bacterial functionality but prevent their escape from the ELM. In situ control over the release profiles of the pro-angiogenic protein using light is demonstrated. Finally, it is shown that the released protein is able to bind collagen and promote angiogenic network formation among vascular endothelial cells, indicating the regenerative potential of these ELMs.