Search Results

Now showing 1 - 10 of 11
  • Item
    Charge‐Compensated N‐Doped π ‐Conjugated Polymers: Toward both Thermodynamic Stability of N‐Doped States in Water and High Electron Conductivity
    (Weinheim : Wiley-VCH, 2022) Borrmann, Fabian; Tsuda, Takuya; Guskova, Olga; Kiriy, Nataliya; Hoffmann, Cedric; Neusser, David; Ludwigs, Sabine; Lappan, Uwe; Simon, Frank; Geisler, Martin; Debnath, Bipasha; Krupskaya, Yulia; Al‐Hussein, Mahmoud; Kiriy, Anton
    The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective “in-water” applications is developed. A combined experimental–theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10−2 S cm−1 under ambient conditions and 10−1 S cm−1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced “collapse” of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.
  • Item
    Observation of direction instability in a fiber ring laser
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Arshad, Muhammad Assad; Hartung, Alexander; Pratiwi, Arni Candra; Jäger, Matthias
    We report on the observation of a new phenomenon occurring in a fiber ring laser. This phenomenon is about the transition from an initially bidirectional emission of a reciprocal fiber ring laser to a unidirectional emission at a certain pump power threshold. In addition, the final direction is not predefined but appears to be randomly chosen every time the threshold is exceeded. Therefore, we term this new phenomenon direction instability. Furthermore, we provide a first discussion of how the instability threshold is influenced by the length and the loss of the cavity. We show that the threshold follows a power times length scaling, indicating a nonlinear origin.
  • Item
    Topological transitions in ac/dc-driven superconductor nanotubes
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Fomin, Vladimir M.; Rezaev, Roman O.; Dobrovolskiy, Oleksandr V.
    Extending of nanostructures into the third dimension has become a major research avenue in condensed-matter physics, because of geometry- and topology-induced phenomena. In this regard, superconductor 3D nanoarchitectures feature magnetic field inhomogeneity, non-trivial topology of Meissner currents and complex dynamics of topological defects. Here, we investigate theoretically topological transitions in the dynamics of vortices and slips of the phase of the order parameter in open superconductor nanotubes under a modulated transport current. Relying upon the time-dependent Ginzburg–Landau equation, we reveal two distinct voltage regimes when (i) a dominant part of the tube is in either the normal or superconducting state and (ii) a complex interplay between vortices, phase-slip regions and screening currents determines a rich FFT voltage spectrum. Our findings unveil novel dynamical states in superconductor open nanotubes, such as paraxial and azimuthal phase-slip regions, their branching and coexistence with vortices, and allow for control of these states by superimposed dc and ac current stimuli.
  • Item
    Detection of small bunches of ions using image charges
    (London : Nature Publishing Group, 2018) Räcke, Paul; Spemann, Daniel; Gerlach, Jürgen W.; Rauschenbach, Bernd; Meijer, Jan
    A concept for detection of charged particles in a single fly-by, e.g. within an ion optical system for deterministic implantation, is presented. It is based on recording the image charge signal of ions moving through a detector, comprising a set of cylindrical electrodes. This work describes theoretical and practical aspects of image charge detection (ICD) and detector design and its application in the context of real time ion detection. It is shown how false positive detections are excluded reliably, although the signal-to-noise ratio is far too low for time-domain analysis. This is achieved by applying a signal threshold detection scheme in the frequency domain, which - complemented by the development of specialised low-noise preamplifier electronics - will be the key to developing single ion image charge detection for deterministic implantation.
  • Item
    Programing stimuli-responsiveness of gelatin with electron beams: Basic effects and development of a hydration-controlled biocompatible demonstrator
    (London : Nature Publishing Group, 2017) Riedel, Stefanie; Heyart, Benedikt; Apel, Katharina S.; Mayr, Stefan G.
    Biomimetic materials with programmable stimuli responsiveness constitute a highly attractive material class for building bioactuators, sensors and active control elements in future biomedical applications. With this background, we demonstrate how energetic electron beams can be utilized to construct tailored stimuli responsive actuators for biomedical applications. Composed of collagen-derived gelatin, they reveal a mechanical response to hydration and changes in pH-value and ion concentration, while maintaining their excellent biocompatibility and biodegradability. While this is explicitly demonstrated by systematic characterizing an electron-beam synthesized gelatin-based actuator of cantilever geometry, the underlying materials processes are also discussed, based on the fundamental physical and chemical principles. When applied within classical electron beam lithography systems, these findings pave the way for a novel class of highly versatile integrated bioactuators from micro-to macroscales.
  • Item
    Direct measurement of Coulomb-laser coupling
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Azoury, Doron; Krüger, Michael; Bruner, Barry D.; Smirnova, Olga; Dudovich, Nirit
    The Coulomb interaction between a photoelectron and its parent ion plays an important role in a large range of light-matter interactions. In this paper we obtain a direct insight into the Coulomb interaction and resolve, for the first time, the phase accumulated by the laser-driven electron as it interacts with the Coulomb potential. Applying extreme-ultraviolet interferometry enables us to resolve this phase with attosecond precision over a large energy range. Our findings identify a strong laser-Coulomb coupling, going beyond the standard recollision picture within the strong-field framework. Transformation of the results to the time domain reveals Coulomb-induced delays of the electrons along their trajectories, which vary by tens of attoseconds with the laser field intensity.
  • Item
    Stable coherent mode-locking based on π pulse formation in single-section lasers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Arkhipov, Rostislav; Pakhomov, Anton; Arkhipov, Mikhail; Babushkin, Ihar; Rosanov, Nikolay
    Here we consider coherent mode-locking (CML) regimes in single-section cavity lasers, taking place for pulse durations less than atomic population and phase relaxation times, which arise due to coherent Rabi oscillations of the atomic inversion. Typically, CML is introduced for lasers with two sections, the gain and absorber ones. Here we show that, for certain combination of the cavity length and relaxation parameters, a very stable CML in a laser, containing only gain section, may arise. The mode-locking is unconditionally self-starting and appears due to balance of intra-pulse de-excitation and slow interpulse-scale pump-induced relaxation processes. We also discuss the scaling of the system to shorter pulse durations, showing a possibility of mode-locking for few-cycle pulses.
  • Item
    Explosive death induced by mean–field diffusion in identical oscillators
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2017) Verma, Umesh Kumar; Sharma, Amit; Kamal, Neeraj Kumar; Kurths, Jürgen; Shrimali, Manish Dev
    We report the occurrence of an explosive death transition for the first time in an ensemble of identical limit cycle and chaotic oscillators coupled via mean–field diffusion. In both systems, the variation of the normalized amplitude with the coupling strength exhibits an abrupt and irreversible transition to death state from an oscillatory state and this first order phase transition to death state is independent of the size of the system. This transition is quite general and has been found in all the coupled systems where in–phase oscillations co–exist with a coupling dependent homogeneous steady state. The backward transition point for this phase transition has been calculated using linear stability analysis which is in complete agreement with the numerics.
  • Item
    New methodology to process shifted excitation Raman difference spectroscopy data : a case study of pollen classification
    ([London] : Macmillan Publishers Limited, 2020) Korinth, F.; Mondol, A.S.; Stiebing, C.; Schie, I.W.; Krafft, C.; Popp, J.
    Shifted excitation Raman difference spectroscopy (SERDS) is a background correction method for Raman spectroscopy. Here, the difference spectra were directly used as input for SERDS-based classification after an optimization procedure to correct for photobleaching of the autofluorescence. Further processing included a principal component analysis to compensate for the reduced signal to noise ratio of the difference spectra and subsequent classification by linear discriminant analysis. As a case study 6,028 Raman spectra of single pollen originating from plants of eight different genera and four different growth habits were automatically recorded at excitation wavelengths 784 and 786 nm using a high-throughput screening Raman system. Different pollen were distinguished according to their growth habit, i.e. tree versus non-tree with an accuracy of 95.9%. Furthermore, all pollen were separated according to their genus, providing also insight into similarities based on their families. Classification results were compared using spectra reconstructed from the differences and raw spectra after state-of-art baseline correction as input. Similar sensitivities, specificities, accuracies and precisions were found for all spectra with moderately background. Advantages of SERDS are expected in scenarios where Raman spectra are affected by variations due to detector etaloning, ambient light, and high background.
  • Item
    Erratum: Sample-based approach can outperform the classical dynamical analysis - experimental confirmation of the basin stability method
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2017) Brzeski, P.; Wojewoda, J.; Kapitaniak, T.; Kurths, J.; Perlikowski, P.
    The original version of this Article contained a typographical error in the spelling of the author T. Kapitaniak, which was incorrectly given as T. Kapitaniakenglish. This has now been corrected in the PDF and HTML versions of the Article.