Search Results

Now showing 1 - 2 of 2
  • Item
    Importance of size representation and morphology in modelling optical properties of black carbon: comparison between laboratory measurements and model simulations
    (Katlenburg-Lindau : Copernicus, 2022) Romshoo, Baseerat; Pöhlker, Mira; Wiedensohler, Alfred; Pfeifer, Sascha; Saturno, Jorge; Nowak, Andreas; Ciupek, Krzysztof; Quincey, Paul; Vasilatou, Konstantina; Ess, Michaela N.; Gini, Maria; Eleftheriadis, Konstantinos; Robins, Chris; Gaie-Levrel, François; Müller, Thomas
    Black carbon (BC) from incomplete combustion of biomass or fossil fuels is the strongest absorbing aerosol component in the atmosphere. Optical properties of BC are essential in climate models for quantification of their impact on radiative forcing. The global climate models, however, consider BC to be spherical particles, which causes uncertainties in their optical properties. Based on this, an increasing number of model-based studies provide databases and parameterization schemes for the optical properties of BC, using more realistic fractal aggregate morphologies. In this study, the reliability of the different modelling techniques of BC was investigated by comparing them to laboratory measurements. The modelling techniques were examined for bare BC particles in the first step and for BC particles with organic material in the second step. A total of six morphological representations of BC particles were compared, three each for spherical and fractal aggregate morphologies. In general, the aggregate representation performed well for modelling the particle light absorption coefficient σabs, single-scattering albedo SSA, and mass absorption cross-section MACBC for laboratory-generated BC particles with volume mean mobility diameters dp,V larger than 100nm. However, for modelling Ångström absorption exponent AAE, it was difficult to suggest a method due to size dependence, although the spherical assumption was in better agreement in some cases. The BC fractal aggregates are usually modelled using monodispersed particles, since their optical simulations are computationally expensive. In such studies, the modelled optical properties showed a 25% uncertainty in using the monodisperse size method. It is shown that using the polydisperse size distribution in combination with fractal aggregate morphology reduces the uncertainty in measured σabs to 10% for particles with dp,V between 60-160nm. Furthermore, the sensitivities of the BC optical properties to the various model input parameters such as the real and imaginary parts of the refractive index (mre and mim), the fractal dimension (Df), and the primary particle radius (app) of an aggregate were investigated. When the BC particle is small and rather fresh, the change in the Df had relatively little effect on the optical properties. There was, however, a significant relationship between app and the particle light scattering, which increased by a factor of up to 6 with increasing total particle size. The modelled optical properties of BC are well aligned with laboratory-measured values when the following assumptions are used in the fractal aggregate representation: mre between 1.6 and 2, mim between 0.50 and 1, Df from 1.7 to 1.9, and app between 10 and 14nm. Overall, this study provides experimental support for emphasizing the importance of an appropriate size representation (polydisperse size method) and an appropriate morphological representation for optical modelling and parameterization scheme development of BC.
  • Item
    New developments in the representation of Saharan dust sources in the aerosol-climate model ECHAM6-HAM2
    (München : European Geopyhsical Union, 2016) Heinold, Bernd; Tegen, Ina; Schepanski, Kerstin; Banks, Jamie R.
    In the aerosol-climate model ECHAM6-HAM2, dust source activation (DSA) observations from Meteosat Second Generation (MSG) satellite are proposed to replace the original source area parameterization over the Sahara Desert. The new setup is tested in nudged simulations for the period 2007 to 2008. The evaluation is based on comparisons to dust emission events inferred from MSG dust index imagery, Aerosol Robotic Network (AERONET) sun photometer observations, and satellite retrievals of aerosol optical thickness (AOT). The model results agree well with AERONET measurements especially in terms of seasonal variability, and a good spatial correlation was found between model results and MSG-SEVIRI (Spinning-Enhanced Visible and InfraRed Imager) dust AOT as well as Multi-angle Imaging SpectroRadiometer (MISR) AOT. ECHAM6-HAM2 computes a more realistic geographical distribution and up to 20 % higher annual Saharan dust emissions, using the MSG-based source map. The representation of dust AOT is partly improved in the southern Sahara and Sahel. In addition, the spatial variability is increased towards a better agreement with observations depending on the season. Thus, using the MSG DSA map can help to circumvent the issue of uncertain soil input parameters. An important issue remains the need to improve the model representation of moist convection and stable nighttime conditions. Compared to sub-daily DSA information from MSG-SEVIRI and results from a regional model, ECHAM6-HAM2 notably underestimates the important fraction of morning dust events by the breakdown of the nocturnal low-level jet, while a major contribution is from afternoon-to-evening emissions.