Search Results

Now showing 1 - 8 of 8
  • Item
    TinyGenius: Intertwining natural language processing with microtask crowdsourcing for scholarly knowledge graph creation
    (New York,NY,United States : Association for Computing Machinery, 2022) Oelen, Allard; Stocker, Markus; Auer, Sören; Aizawa, Akiko
    As the number of published scholarly articles grows steadily each year, new methods are needed to organize scholarly knowledge so that it can be more efficiently discovered and used. Natural Language Processing (NLP) techniques are able to autonomously process scholarly articles at scale and to create machine readable representations of the article content. However, autonomous NLP methods are by far not sufficiently accurate to create a high-quality knowledge graph. Yet quality is crucial for the graph to be useful in practice. We present TinyGenius, a methodology to validate NLP-extracted scholarly knowledge statements using microtasks performed with crowdsourcing. The scholarly context in which the crowd workers operate has multiple challenges. The explainability of the employed NLP methods is crucial to provide context in order to support the decision process of crowd workers. We employed TinyGenius to populate a paper-centric knowledge graph, using five distinct NLP methods. In the end, the resulting knowledge graph serves as a digital library for scholarly articles.
  • Item
    Crowdsourcing Scholarly Discourse Annotations
    (New York, NY : ACM, 2021) Oelen, Allard; Stocker, Markus; Auer, Sören
    The number of scholarly publications grows steadily every year and it becomes harder to find, assess and compare scholarly knowledge effectively. Scholarly knowledge graphs have the potential to address these challenges. However, creating such graphs remains a complex task. We propose a method to crowdsource structured scholarly knowledge from paper authors with a web-based user interface supported by artificial intelligence. The interface enables authors to select key sentences for annotation. It integrates multiple machine learning algorithms to assist authors during the annotation, including class recommendation and key sentence highlighting. We envision that the interface is integrated in paper submission processes for which we define three main task requirements: The task has to be . We evaluated the interface with a user study in which participants were assigned the task to annotate one of their own articles. With the resulting data, we determined whether the participants were successfully able to perform the task. Furthermore, we evaluated the interface’s usability and the participant’s attitude towards the interface with a survey. The results suggest that sentence annotation is a feasible task for researchers and that they do not object to annotate their articles during the submission process.
  • Item
    Multimodal news analytics using measures of cross-modal entity and context consistency
    (London : Springer, 2021) Müller-Budack, Eric; Theiner, Jonas; Diering, Sebastian; Idahl, Maximilian; Hakimov, Sherzod; Ewerth, Ralph
    The World Wide Web has become a popular source to gather information and news. Multimodal information, e.g., supplement text with photographs, is typically used to convey the news more effectively or to attract attention. The photographs can be decorative, depict additional details, but might also contain misleading information. The quantification of the cross-modal consistency of entity representations can assist human assessors’ evaluation of the overall multimodal message. In some cases such measures might give hints to detect fake news, which is an increasingly important topic in today’s society. In this paper, we present a multimodal approach to quantify the entity coherence between image and text in real-world news. Named entity linking is applied to extract persons, locations, and events from news texts. Several measures are suggested to calculate the cross-modal similarity of the entities in text and photograph by exploiting state-of-the-art computer vision approaches. In contrast to previous work, our system automatically acquires example data from the Web and is applicable to real-world news. Moreover, an approach that quantifies contextual image-text relations is introduced. The feasibility is demonstrated on two datasets that cover different languages, topics, and domains.
  • Item
    B!SON: A Tool for Open Access Journal Recommendation
    (Heidelberg : Springer, 2022) Entrup, Elias; Eppelin, Anita; Ewerth, Ralph; Hartwig, Josephine; Tullney, Marco; Wohlgemuth, Michael; Hoppe, Anett; Nugent, Ronan
    Finding a suitable open access journal to publish scientific work is a complex task: Researchers have to navigate a constantly growing number of journals, institutional agreements with publishers, funders’ conditions and the risk of Predatory Publishers. To help with these challenges, we introduce a web-based journal recommendation system called B!SON. It is developed based on a systematic requirements analysis, built on open data, gives publisher-independent recommendations and works across domains. It suggests open access journals based on title, abstract and references provided by the user. The recommendation quality has been evaluated using a large test set of 10,000 articles. Development by two German scientific libraries ensures the longevity of the project.
  • Item
    Rechtliche Fragen bei der Nutzung von Abbildungen aus Open-Access-Publikationen
    (Heidelberg : Universitätsbibliothek Heidelberg, 2022) Sohmen, Lucia; Rack, Fabian; Heuveline, Vincent; Bisheh, Nina
    Die zunehmende Verfügbarkeit von Forschungsdaten eröffnet Forschenden neue Möglichkeiten, mit von Dritten erstellten Forschungsdaten zu arbeiten. Dieser Beitrag befasst sich mit der Frage, welche rechtlichen Rahmenbedingungen gelten, wenn diese nachgenutzten Forschungsdaten öffentlich verfügbar gemacht werden sollen. Im Speziellen geht der Artikel dabei auf Bildersuchmaschinen und das Veröffentlichen von Bildkorpora ein. Dabei wird dargestellt, dass es bei der öffentlichen Zugänglichmachung von unübersichtlichen Bildmengen keine hundertprozentige Sicherheit geben kann. Durch bestimmte Abwägungen und technische Mittel kann sich dieser aber angenähert werden.
  • Item
    Causal Relationship over Knowledge Graphs
    (2022) Huang, Hao; Al Hasan, Mohammad; Xiong, Li
    Causality has been discussed for centuries, and the theory of causal inference over tabular data has been broadly studied and utilized in multiple disciplines. However, only a few works attempt to infer the causality while exploiting the meaning of the data represented in a data structure like knowledge graph. These works offer a glance at the possibilities of causal inference over knowledge graphs, but do not yet consider the metadata, e.g., cardinalities, class subsumption and overlap, and integrity constraints. We propose CareKG, a new formalism to express causal relationships among concepts, i.e., classes and relations, and enable causal queries over knowledge graphs using semantics of metadata. We empirically evaluate the expressiveness of CareKG in a synthetic knowledge graph concerning cardinalities, class subsumption and overlap, integrity constraints. Our initial results indicate that CareKG can represent and measure causal relations with some semantics which are uncovered by state-of-the-art approaches.
  • Item
    Knowledge Graphs - Working Group Charter (NFDI section-metadata) (1.2)
    (Genève : CERN, 2023) Stocker, Markus; Rossenova, Lozana; Shigapov, Renat; Betancort, Noemi; Dietze, Stefan; Murphy, Bridget; Bölling, Christian; Schubotz, Moritz; Koepler, Oliver
    Knowledge Graphs are a key technology for implementing the FAIR principles in data infrastructures by ensuring interoperability for both humans and machines. The Working Group "Knowledge Graphs" in Section "(Meta)data, Terminologies, Provenance" of the German National Research Data Infrastructure (Nationale Forschungsdateninfrastruktur (NFDI) e.V.) aims to promote the use of knowledge graphs in all NFDI consortia, to facilitate cross-domain data interlinking and federation following the FAIR principles, and to contribute to the joint development of tools and technologies that enable transformation of structured and unstructured data into semantically reusable knowledge across different domains.
  • Item
    Open Research Knowledge Graph
    (Goettingen: Cuvillier Verlag, 2024-05-07) Auer, Sören; Ilangovan, Vinodh; Stocker, Markus; Tiwari, Sanju; Vogt, Lars; Bernard-Verdier, Maud; D'Souza, Jennifer; Fadel , Kamel; Farfar, Kheir Eddine; Göpfert , Jan; Haris , Muhammad; Heger, Tina; Hussein, Hassan; Jaradeh, Yaser; Jeschke, Jonathan M.; Jiomekong , Azanzi; Kabongo, Salomon; Karras, Oliver; Kuckertz, Patrick; Kullamann, Felix; Martin, Emily A.; Oelen, Allard; Perez-Alvarez, Ricardo; Prinz, Manuel; Snyder, Lauren D.; Stolten, Detlef; Weinand, Jann M.
    As we mark the fifth anniversary of the alpha release of the Open Research Knowledge Graph (ORKG), it is both timely and exhilarating to celebrate the significant strides made in this pioneering project. We designed this book as a tribute to the evolution and achievements of the ORKG and as a practical guide encapsulating its essence in a form that resonates with both the general reader and the specialist. The ORKG has opened a new era in the way scholarly knowledge is curated, managed, and disseminated. By transforming vast arrays of unstructured narrative text into structured, machine-processable knowledge, the ORKG has emerged as an essential service with sophisticated functionalities. Over the past five years, our team has developed the ORKG into a vibrant platform that enhances the accessibility and visibility of scientific research. This book serves as a non-technical guide and a comprehensive reference for new and existing users that outlines the ORKG’s approach, technologies, and its role in revolutionizing scholarly communication. By elucidating how the ORKG facilitates the collection, enhancement, and sharing of knowledge, we invite readers to appreciate the value and potential of this groundbreaking digital tool presented in a tangible form. Looking ahead, we are thrilled to announce the upcoming unveiling of promising new features and tools at the fifth-year celebration of the ORKG’s alpha release. These innovations are set to redefine the boundaries of machine assistance enabled by research knowledge graphs. Among these enhancements, you can expect more intuitive interfaces that simplify the user experience, and enhanced machine learning models that improve the automation and accuracy of data curation. We also included a glossary tailored to clarifying key terms and concepts associated with the ORKG to ensure that all readers, regardless of their technical background, can fully engage with and understand the content presented. This book transcends the boundaries of a typical technical report. We crafted this as an inspiration for future applications, a testament to the ongoing evolution in scholarly communication that invites further collaboration and innovation. Let this book serve as both your guide and invitation to explore the ORKG as it continues to grow and shape the landscape of scientific inquiry and communication.