Search Results

Now showing 1 - 10 of 34
  • Item
    Ocean warming and acidification may drag down the commercial Arctic cod fishery by 2100
    (San Francisco, California, US : PLOS, 2020) Hänsel, Martin C.; Schmidt, Jörn O.; Stiasny, Martina H.; Stöven, Max T.; Voss, Rudi; Quaas, Martin F.
    The Arctic Ocean is an early warning system for indicators and effects of climate change. We use a novel combination of experimental and time-series data on effects of ocean warming and acidification on the commercially important Northeast Arctic cod (Gadus morhua) to incorporate these physiological processes into the recruitment model of the fish population. By running an ecological-economic optimization model, we investigate how the interaction of ocean warming, acidification and fishing pressure affects the sustainability of the fishery in terms of ecological, economic, social and consumer-related indicators, ranging from present day conditions up to future climate change scenarios. We find that near-term climate change will benefit the fishery, but under likely future warming and acidification this large fishery is at risk of collapse by the end of the century, even with the best adaptation effort in terms of reduced fishing pressure.
  • Item
    IMAGE-IN: Interactive web-based multidimensional 3D visualizer for multi-modal microscopy images
    (San Francisco, California, US : PLOS, 2022) Gupta, Yubraj; Costa, Carlos; Pinho, Eduardo; A. Bastião Silva, Luís; Heintzmann, Rainer
    Advances in microscopy hardware and storage capabilities lead to increasingly larger multidimensional datasets. The multiple dimensions are commonly associated with space, time, and color channels. Since “seeing is believing”, it is important to have easy access to user-friendly visualization software. Here we present IMAGE-IN, an interactive web-based multidimensional (N-D) viewer designed specifically for confocal laser scanning microscopy (CLSM) and focused ion beam scanning electron microscopy (FIB-SEM) data, with the goal of assisting biologists in their visualization and analysis tasks and promoting digital work-flows. This new visualization platform includes intuitive multidimensional opacity fine-tuning, shading on/off, multiple blending modes for volume viewers, and the ability to handle multichannel volumetric data in volume and surface views. The software accepts a sequence of image files or stacked 3D images as input and offers a variety of viewing options ranging from 3D volume/surface rendering to multiplanar reconstruction approaches. We evaluate the performance by comparing the loading and rendering timings of a heterogeneous dataset of multichannel CLSM and FIB-SEM images on two devices with installed graphic cards, as well as comparing rendered image quality between ClearVolume (the ImageJ open-source desktop viewer), Napari (the Python desktop viewer), Imaris (the closed-source desktop viewer), and our proposed IMAGE-IN web viewer.
  • Item
    Non-thermal plasma modulates cellular markers associated with immunogenicity in a model of latent HIV-1 infection
    (San Francisco, California, US : PLOS, 2021) Mohamed, Hager; Clemen, Ramona; Freund, Eric; Lackmann, Jan-Wilm; Wende, Kristian; Connors, Jennifer; Haddad, Elias K.; Dampier, Will; Wigdahl, Brian; Miller, Vandana; Bekeschus, Sander; Krebs, Fred C.; Kashanchi, Fatah
    Effective control of infection by human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), requires continuous and life-long use of anti-retroviral therapy (ART) by people living with HIV-1 (PLWH). In the absence of ART, HIV-1 reemergence from latently infected cells is ineffectively suppressed due to suboptimal innate and cytotoxic T lymphocyte responses. However, ART-free control of HIV-1 infection may be possible if the inherent immunological deficiencies can be reversed or restored. Herein we present a novel approach for modulating the immune response to HIV-1 that involves the use of non-thermal plasma (NTP), which is an ionized gas containing various reactive oxygen and nitrogen species (RONS). J-Lat cells were used as a model of latent HIV-1 infection to assess the effects of NTP application on viral latency and the expression of pro-phagocytic and pro-chemotactic damage-associated molecular patterns (DAMPs). Exposure of J-Lat cells to NTP resulted in stimulation of HIV-1 gene expression, indicating a role in latency reversal, a necessary first step in inducing adaptive immune responses to viral antigens. This was accompanied by the release of pro-inflammatory cytokines and chemokines including interleukin-1β (IL-1β) and interferon-γ (IFN-γ); the display of pro-phagocytic markers calreticulin (CRT), heat shock proteins (HSP) 70 and 90; and a correlated increase in macrophage phagocytosis of NTP-exposed J-Lat cells. In addition, modulation of surface molecules that promote or inhibit antigen presentation was also observed, along with an altered array of displayed peptides on MHC I, further suggesting methods by which NTP may modify recognition and targeting of cells in latent HIV-1 infection. These studies represent early progress toward an effective NTP-based ex vivo immunotherapy to resolve the dysfunctions of the immune system that enable HIV-1 persistence in PLWH.
  • Item
    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties
    (London : Nature Publ. Group, 2021) Phillips, Helen R. P.; Bach, Elizabeth M.; Bartz, Marie L. C.; Bennett, Joanne M.; Beugnon, Rémy; Briones, Maria J. I.; Brown, George G.; Ferlian, Olga; Gongalsky, Konstantin B.; Guerra, Carlos A.; König-Ries, Birgitta; López-Hernández, Danilo; Loss, Scott R.; Marichal, Raphael; Matula, Radim; Minamiya, Yukio; Moos, Jan Hendrik; Moreno, Gerardo; Morón-Ríos, Alejandro; Motohiro, Hasegawa; Muys, Bart; Krebs, Julia J.; Neirynck, Johan; Norgrove, Lindsey; Novo, Marta; Nuutinen, Visa; Nuzzo, Victoria; Mujeeb Rahman, P.; Pansu, Johan; Paudel, Shishir; Pérès, Guénola; Pérez-Camacho, Lorenzo; Orgiazzi, Alberto; Ponge, Jean-François; Prietzel, Jörg; Rapoport, Irina B.; Rashid, Muhammad Imtiaz; Rebollo, Salvador; Rodríguez, Miguel Á.; Roth, Alexander M.; Rousseau, Guillaume X.; Rozen, Anna; Sayad, Ehsan; Ramirez, Kelly S.; van Schaik, Loes; Scharenbroch, Bryant; Schirrmann, Michael; Schmidt, Olaf; Schröder, Boris; Seeber, Julia; Shashkov, Maxim P.; Singh, Jaswinder; Smith, Sandy M.; Steinwandter, Michael; Russell, David J.; Szlavecz, Katalin; Talavera, José Antonio; Trigo, Dolores; Tsukamoto, Jiro; Uribe-López, Sheila; de Valença, Anne W.; Virto, Iñigo; Wackett, Adrian A.; Warren, Matthew W.; Webster, Emily R.; Schwarz, Benjamin; Wehr, Nathaniel H.; Whalen, Joann K.; Wironen, Michael B.; Wolters, Volkmar; Wu, Pengfei; Zenkova, Irina V.; Zhang, Weixin; Cameron, Erin K.; Eisenhauer, Nico; Wall, Diana H.; Brose, Ulrich; Decaëns, Thibaud; Lavelle, Patrick; Loreau, Michel; Mathieu, Jérôme; Mulder, Christian; van der Putten, Wim H.; Rillig, Matthias C.; Thakur, Madhav P.; de Vries, Franciska T.; Wardle, David A.; Ammer, Christian; Ammer, Sabine; Arai, Miwa; Ayuke, Fredrick O.; Baker, Geoff H.; Baretta, Dilmar; Barkusky, Dietmar; Beauséjour, Robin; Bedano, Jose C.; Birkhofer, Klaus; Blanchart, Eric; Blossey, Bernd; Bolger, Thomas; Bradley, Robert L.; Brossard, Michel; Burtis, James C.; Capowiez, Yvan; Cavagnaro, Timothy R.; Choi, Amy; Clause, Julia; Cluzeau, Daniel; Coors, Anja; Crotty, Felicity V.; Crumsey, Jasmine M.; Dávalos, Andrea; Cosín, Darío J. Díaz; Dobson, Annise M.; Domínguez, Anahí; Duhour, Andrés Esteban; van Eekeren, Nick; Emmerling, Christoph; Falco, Liliana B.; Fernández, Rosa; Fonte, Steven J.; Fragoso, Carlos; Franco, André L. C.; Fusilero, Abegail; Geraskina, Anna P.; Gholami, Shaieste; González, Grizelle; Gundale, Michael J.; López, Mónica Gutiérrez; Hackenberger, Branimir K.; Hackenberger, Davorka K.; Hernández, Luis M.; Hirth, Jeff R.; Hishi, Takuo; Holdsworth, Andrew R.; Holmstrup, Martin; Hopfensperger, Kristine N.; Lwanga, Esperanza Huerta; Huhta, Veikko; Hurisso, Tunsisa T.; Iannone, Basil V.; Iordache, Madalina; Irmler, Ulrich; Ivask, Mari; Jesús, Juan B.; Johnson-Maynard, Jodi L.; Joschko, Monika; Kaneko, Nobuhiro; Kanianska, Radoslava; Keith, Aidan M.; Kernecker, Maria L.; Koné, Armand W.; Kooch, Yahya; Kukkonen, Sanna T.; Lalthanzara, H.; Lammel, Daniel R.; Lebedev, Iurii M.; Le Cadre, Edith; Lincoln, Noa K.
    Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.
  • Item
    Characterizing the sectoral development of cities
    (San Francisco, California, US : PLOS, 2021) Rybski, Diego; Pradhan, Prajal; Shutters, Shade T.; Butsic, Van; Kropp, Jürgen P.; Xue, Bing
    Previous research has identified a predictive model of how a nation’s distribution of gross domestic product (GDP) among agriculture (a), industry (i), and services (s) changes as a country develops. Here we use this national model to analyze the composition of GDP for US Metropolitan Statistical Areas (MSA) over time. To characterize the transfer of GDP shares between the sectors in the course of economic development we explore a simple system of differential equations proposed in the country-level model. Fitting the model to more than 120 MSAs we find that according to the obtained parameters MSAs can be classified into 6 groups (consecutive, high industry, re-industrializing; each of them also with reversed development direction). The consecutive transfer (a → i → s) is common but does not represent all MSAs examined. At the 95% confidence level, 40% of MSAs belong to types exhibiting an increasing share of GDP from agriculture. In California, such MSAs, which we classify as part of an agriculture renaissance, are found in the Central Valley.
  • Item
    A model of the indirect losses from negative shocks in production and finance
    (San Francisco, California, US : PLOS, 2020) Krichene, Hazem; Inoue, Hiroyasu; Isogai, Takashi; Chakraborty, Abhijit
    Economies are frequently affected by natural disasters and both domestic and overseas financial crises. These events disrupt production and cause multiple other types of economic losses, including negative impacts on the banking system. Understanding the transmission mechanism that causes various negative second-order post-catastrophe effects is crucial if policymakers are to develop more efficient recovery strategies. In this work, we introduce a credit-based adaptive regional input-output (ARIO) model to analyse the effects of disasters and crises on the supply chain and bank-firm credit networks. Using real Japanese networks and the exogenous shocks of the 2008 Lehman Brothers bankruptcy and the Great East Japan Earthquake (March 11, 2011), this paper aims to depict how these negative shocks propagate through the supply chain and affect the banking system. The credit-based ARIO model is calibrated using Latin hypercube sampling and the design of experiments procedure to reproduce the short-term (one-year) dynamics of the Japanese industrial production index after the 2008 Lehman Brothers bankruptcy and the 2011 Great East Japan earthquake. Then, through simulation experiments, we identify the chemical and petroleum manufacturing and transport sectors as the most vulnerable Japanese industrial sectors. Finally, the case of the 2011 Great East Japan Earthquake is simulated for Japanese prefectures to understand differences among regions in terms of globally engendered indirect economic losses. Tokyo and Osaka prefectures are the most vulnerable locations because they hold greater concentrations of the above-mentioned vulnerable industrial sectors.
  • Item
    The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury
    ([London] : Nature Publishing Group UK, 2022) Bretheau, Floriane; Castellanos-Molina, Adrian; Bélanger, Dominic; Kusik, Maxime; Mailhot, Benoit; Boisvert, Ana; Vallières, Nicolas; Lessard, Martine; Gunzer, Matthias; Liu, Xiaoyu; Boilard, Éric; Quan, Ning; Lacroix, Steve
    Spinal cord injury (SCI) triggers neuroinflammation, and subsequently secondary degeneration and oligodendrocyte (OL) death. We report that the alarmin interleukin (IL)−1α is produced by damaged microglia after SCI. Intra-cisterna magna injection of IL-1α in mice rapidly induces neutrophil infiltration and OL death throughout the spinal cord, mimicking the injury cascade seen in SCI sites. These effects are abolished through co-treatment with the IL-1R1 antagonist anakinra, as well as in IL-1R1-knockout mice which demonstrate enhanced locomotor recovery after SCI. Conditional restoration of IL-1R1 expression in astrocytes or endothelial cells (ECs), but not in OLs or microglia, restores IL-1α-induced effects, while astrocyte- or EC-specific Il1r1 deletion reduces OL loss. Conditioned medium derived from IL-1α-stimulated astrocytes results in toxicity for OLs; further, IL-1α-stimulated astrocytes generate reactive oxygen species (ROS), and blocking ROS production in IL-1α-treated or SCI mice prevented OL loss. Thus, after SCI, microglia release IL-1α, inducing astrocyte- and EC-mediated OL degeneration.
  • Item
    Response of the wood-decay fungus Schizophyllum commune to co-occurring microorganisms
    (San Francisco, California, US : PLOS, 2020) Krause, Katrin; Jung, Elke-Martina; Lindner, Julia; Hardiman, Imam; Petschner, Jessica; Madhavan, Soumya; Matthäus, Christian; Kai, Marco; Menezes, Riya Christina; Popp, Jürgen; Svatoš, Aleš; Kothe, Erika
    Microorganisms are constantly interacting in a given environment by a constant exchange of signaling molecules. In timber, wood-decay fungi will come into contact with other fungi and bacteria. In naturally bleached wood, dark, pigmented lines arising from confrontation of two fungi often hint at such interactions. The metabolites (and pigment) exchange was investigated using the lignicolous basidiomycete Schizophyllum commune, and co-occurring fungi and bacteria inoculated directly on sterilized wood, or on media. In interactions with competitive wood degrading fungi, yeasts or bacteria, different competition strategies and communication types were observed, and stress reactions, as well as competitor-induced enzymes or pigments were analyzed. Melanin, indole, flavonoids and carotenoids were shown to be induced in S. commune interactions. The induced genes included multi-copper oxidases lcc1, lcc2, mco1, mco2, mco3 and mco4, possibly involved in both pigment production and lignin degradation typical for wood bleaching by wood-decay fungi.
  • Item
    Guiding cell adhesion and motility by modulating cross-linking and topographic properties of microgel arrays
    (San Francisco, California, US : PLOS, 2021) Riegert, Janine; Töpel, Alexander; Schieren, Jana; Coryn, Renee; Dibenedetto, Stella; Braunmiller, Dominik; Zajt, Kamil; Schalla, Carmen; Rütten, Stephan; Zenke, Martin; Pich, Andrij; Sechi, Antonio; Blank, Kerstin G.
    Biomaterial-driven modulation of cell adhesion and migration is a challenging aspect of tissue engineering. Here, we investigated the impact of surface-bound microgel arrays with variable geometry and adjustable cross-linking properties on cell adhesion and migration. We show that cell migration is inversely correlated with microgel array spacing, whereas directionality increases as array spacing increases. Focal adhesion dynamics is also modulated by microgel topography resulting in less dynamic focal adhesions on surface-bound microgels. Microgels also modulate the motility and adhesion of Sertoli cells used as a model for cell migration and adhesion. Both focal adhesion dynamics and speed are reduced on microgels. Interestingly, Gas2L1, a component of the cytoskeleton that mediates the interaction between microtubules and microfilaments, is dispensable for the regulation of cell adhesion and migration on microgels. Finally, increasing microgel cross-linking causes a clear reduction of focal adhesion turnover in Sertoli cells. These findings not only show that spacing and rigidity of surface-grafted microgels arrays can be effectively used to modulate cell adhesion and motility of diverse cellular systems, but they also form the basis for future developments in the fields of medicine and tissue engineering.
  • Item
    Impacts of climate change on agro-climatic suitability of major food crops in Ghana
    (San Francisco, California, US : PLOS, 2020) Chemura, Abel; Schauberger, Bernhard; Gornott, Christoph
    Climate change is projected to impact food production stability in many tropical countries through impacts on crop potential. However, without quantitative assessments of where, by how much and to what extent crop production is possible now and under future climatic conditions, efforts to design and implement adaptation strategies under Nationally Determined Contributions (NDCs) and National Action Plans (NAP) are unsystematic. In this study, we used extreme gradient boosting, a machine learning approach to model the current climatic suitability for maize, sorghum, cassava and groundnut in Ghana using yield data and agronomically important variables. We then used multi-model future climate projections for the 2050s and two greenhouse gas emissions scenarios (RCP 2.6 and RCP 8.5) to predict changes in the suitability range of these crops. We achieved a good model fit in determining suitability classes for all crops (AUC = 0.81–0.87). Precipitation-based factors are suggested as most important in determining crop suitability, though the importance is crop-specific. Under projected climatic conditions, optimal suitability areas will decrease for all crops except for groundnuts under RCP8.5 (no change: 0%), with greatest losses for maize (12% under RCP2.6 and 14% under RCP8.5). Under current climatic conditions, 18% of Ghana has optimal suitability for two crops, 2% for three crops with no area having optimal suitability for all the four crops. Under projected climatic conditions, areas with optimal suitability for two and three crops will decrease by 12% as areas having moderate and marginal conditions for multiple crops increase. We also found that although the distribution of multiple crop suitability is spatially distinct, cassava and groundnut will be more simultaneously suitable for the south while groundnut and sorghum will be more suitable for the northern parts of Ghana under projected climatic conditions.