Search Results

Now showing 1 - 3 of 3
  • Item
    Safe and efficient 2D molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: A preclinical study
    (Amsterdam [u.a.] : Elsevier, 2021) Li, Xin; Kong, Lingdan; Hu, Wei; Zhang, Changchang; Pich, Andrij; Shi, Xiangyang; Wang, Xipeng; Xing, Lingxi
    Introduction: The striking imbalance between the ever-increasing amount of nanomedicines and low clinical translation of products has become the focus of intense debate. For clinical translation, the critical issue is to select the appropriate agents and combination regimen for targeted diseases, not to prepare increasingly complex nanoplatforms. Objectives: A safe and efficient platform, α-tocopheryl succinate (α-TOS) married 2D molybdenum disulfide, was devised by a facile method and applied for cooperative imaging-guided photothermal-selective chemotherapy of ovarian carcinoma. Methods: A novel platform of PEGylated α-TOS and folic acid (FA) conjugated 2D MoS2 nanoflakes was fabricated for the cooperative multimode computed tomography (CT)/photoacoustic (PA)/thermal imaging-guided photothermal-selective chemotherapy of ovarian carcinoma. Results: The photothermal efficiency (65.3%) of the platform under safe near-infrared irradiation is much higher than that of other photothermal materials reported elsewhere. Moreover, the covalently linked α-TOS renders platform with selective chemotherapy for cancer cells. Remarkably, with these excellent properties, the platform can be used to completely eliminate the solid tumor by safe photothermal therapy, and then kill the residual cancer cells by selective chemotherapy to prevent tumor recurrence. More significantly, barely side effects occur in the whole treatment process. The excellent efficacy and safety benefits in vivo lead to the prominent survival rate of 100% over 91 days. Conclusion: The safe and efficient platform might be a candidate of clinical nanomedicines for multimode theranostics. This study demonstrates an innovative thought in precise nanomedicine regarding the design of next generation of cancer theranostic protocol for potential clinical practice.
  • Item
    Medical gas plasma augments bladder cancer cell toxicity in preclinical models and patient-derived tumor tissues
    (Amsterdam [u.a.] : Elsevier, 2022) Gelbrich, Nadine; Miebach, Lea; Berner, Julia; Freund, Eric; Saadati, Fariba; Schmidt, Anke; Stope, Matthias; Zimmermann, Uwe; Burchardt, Martin; Bekeschus, Sander
    Introduction: Medical gas plasma therapy has been successfully applied to several types of cancer in preclinical models. First palliative tumor patients suffering from advanced head and neck cancer benefited from this novel therapeutic modality. The gas plasma-induced biological effects of reactive oxygen and nitrogen species (ROS/RNS) generated in the plasma gas phase result in oxidation-induced lethal damage to tumor cells. Objectives: This study aimed to verify these anti-tumor effects of gas plasma exposure on urinary bladder cancer. Methods: 2D cell culture models, 3D tumor spheroids, 3D vascularized tumors grown on the chicken chorion-allantois-membrane (CAM) in ovo, and patient-derived primary cancer tissue gas plasma-treated ex vivo were used. Results: Gas plasma treatment led to oxidation, growth retardation, motility inhibition, and cell death in 2D and 3D tumor models. A marked decline in tumor growth was also observed in the tumors grown in ovo. In addition, results of gas plasma treatment on primary urothelial carcinoma tissues ex vivo highlighted the selective tumor-toxic effects as non-malignant tissue exposed to gas plasma was less affected. Whole-transcriptome gene expression analysis revealed downregulation of tumor-promoting fibroblast growth factor receptor 3 (FGFR3) accompanied by upregulation of apoptosis-inducing factor 2 (AIFm2), which plays a central role in caspase-independent cell death signaling. Conclusion: Gas plasma treatment induced cytotoxicity in patient-derived cancer tissue and slowed tumor growth in an organoid model of urinary bladder carcinoma, along with less severe effects in non-malignant tissues. Studies on the potential clinical benefits of this local and safe ROS therapy are awaited.
  • Item
    Wildlife-vehicle collisions in hurungwe safari area, northern zimbabwe
    (Amsterdam [u.a.] : Elsevier, 2020) Gandiwa, Edson; Mashapa, Clayton; Muboko, Never; Chemura, Abel; Kuvaoga, Phillip; Mabika, Cheryl T.
    This study is the first to assess wildlife-vehicle collisions (WVC) in Zimbabwe. The study analysed the impact and factors that influence vehicle collisions with large wild mammals along the Harare-Chirundu road section in the protected Hurungwe Safari Area, northern Zimbabwe. Data were retrieved from the Hurungwe Safari Area records and covered the period between 2006 and 2013. Descriptive statistics were used to analyse the recorded variables across the sampled area and to show trends of the prevalence of large wild mammals roadkill over time. Using STATISTICA version 10 for Windows, a two-tailed Mann-Whitney U test was used to determine differences between the number of wild mammal animal roadkills and seasons. A total of 47 large wild mammal animals were killed between 2006 and 2013. The large wild mammal animals that died as a result of vehicle collisions constituted a total of 11 species, with the African buffalo and spotted hyena being the most hit and killed animal species. Most WVC involved heavy haulage trucks and passenger buses. There was no significance difference (P = 0.936) between number of large wild mammal animals killed from WVC between dry and wet seasons. The large wild mammal animals were mostly killed in areas near water sources. We recommend for the inclusion of wildlife protection safeguards in road infrastructure network design and development, particularly on roads that traverse across protected areas in Zimbabwe and beyond. © 2020 The Author(s)