Search Results

Now showing 1 - 4 of 4
  • Item
    Calculation of the steady states in dynamic semiconductor laser models
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Radziunas, Mindaugas
    We discuss numerical challenges in calculating stable and unstable steady states of widely used dynamic semiconductor laser models. Knowledge of these states is valuable when analyzing laser dynamics and different properties of the lasing states. The example simulations and analysis mainly rely on 1(time)+1(space)-dimensional traveling-wave models, where the steady state defining conditions are formulated as a system of nonlinear algebraic equations. The performed steady state calculations reveal limitations of the Lang-Kobayashi model, explain nontrivial bias threshold relations in lasers with several electrical contacts, or predict and explain transient dynamics when simulating such lasers.
  • Item
    Numerical simulation of TEM images for In(Ga)As/GaAs quantum dots with various shapes
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Maltsi, Anieza; Niermann, Tore; Streckenbach, Timo; Tabelow, Karsten; Koprucki, Thomas
    We present a mathematical model and a tool chain for the numerical simulation of TEM images of semiconductor quantum dots (QDs). This includes elasticity theory to obtain the strain profile coupled with the Darwin–Howie–Whelan equations, describing the propagation of the electron wave through the sample. We perform a simulation study on indium gallium arsenide QDs with different shapes and compare the resulting TEM images to experimental ones. This tool chain can be applied to generate a database of simulated TEM images, which is a key element of a novel concept for model-based geometry reconstruction of semiconductor QDs, involving machine learning techniques.
  • Item
    Correction to: Numerical simulation of TEM images for In(Ga)As/GaAs quantum dots with various shapes
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Maltsi, Anieza; Niermann, Tore; Streckenbach, Timo; Tabelow, Karsten; Koprucki, Thomas
    Correction to: Optical and Quantum Electronics (2020) 52:257 https://doi.org/10.1007/s11082-020-02356-y
  • Item
    Detecting striations via the lateral photovoltage scanning method without screening effect
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Kayser, S.; Farrell, P.; Rotundo, N.
    The lateral photovoltage scanning method (LPS) detects doping inhomogeneities in semiconductors such as Si, Ge and SixGe1−x in a cheap, fast and nondestructive manner. LPS relies on the bulk photovoltaic effect and thus can detect any physical quantity affecting the band profiles of the sample. LPS finite volume simulation using commercial software suffer from long simulation times and convergence instabilities. We present here an open-source finite volume simulation for a 2D Si sample using the ddfermi simulator. For low injection conditions we show that the LPS voltage is proportional to the doping gradient. For higher injection conditions, we directly show how the LPS voltage and the doping gradient differ and link the physical effect of lower local resolution to the screening effect. Previously, the loss of local resolution was assumed to be only connected to the enlargement of the excess charge carrier distribution.