Search Results

Now showing 1 - 2 of 2
  • Item
    Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China
    ([London] : Nature Publishing Group UK, 2021) Xing, Xiaofan; Wang, Rong; Bauer, Nico; Ciais, Philippe; Cao, Junji; Chen, Jianmin; Tang, Xu; Wang, Lin; Yang, Xin; Boucher, Olivier; Goll, Daniel; Peñuelas, Josep; Janssens, Ivan A.; Balkanski, Yves; Clark, James; Ma, Jianmin; Pan, Bo; Zhang, Shicheng; Ye, Xingnan; Wang, Yutao; Li, Qing; Luo, Gang; Shen, Guofeng; Li, Wei; Yang, Yechen; Xu, Siqing
    As China ramped-up coal power capacities rapidly while CO2 emissions need to decline, these capacities would turn into stranded assets. To deal with this risk, a promising option is to retrofit these capacities to co-fire with biomass and eventually upgrade to CCS operation (BECCS), but the feasibility is debated with respect to negative impacts on broader sustainability issues. Here we present a data-rich spatially explicit approach to estimate the marginal cost curve for decarbonizing the power sector in China with BECCS. We identify a potential of 222 GW of power capacities in 2836 counties generated by co-firing 0.9 Gt of biomass from the same county, with half being agricultural residues. Our spatially explicit method helps to reduce uncertainty in the economic costs and emissions of BECCS, identify the best opportunities for bioenergy and show the limitations by logistical challenges to achieve carbon neutrality in the power sector with large-scale BECCS in China.
  • Item
    Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic
    ([London] : Nature Publishing Group UK, 2020) Liu, Zhu; Ciais, Philippe; Deng, Zhu; Lei, Ruixue; Davis, Steven J.; Feng, Sha; Zheng, Bo; Cui, Duo; Dou, Xinyu; Zhu, Biqing; Guo, Rui; Ke, Piyu; Sun, Taochun; Lu, Chenxi; He, Pan; Wang, Yuan; Yue, Xu; Wang, Yilong; Lei, Yadong; Zhou, Hao; Cai, Zhaonan; Wu, Yuhui; Guo, Runtao; Han, Tingxuan; Xue, Jinjun; Boucher, Olivier; Boucher, Eulalie; Chevallier, Frédéric; Tanaka, Katsumasa; Wei, Yiming; Zhong, Haiwang; Kang, Chongqing; Zhang, Ning; Chen, Bin; Xi, Fengming; Liu, Miaomiao; Bréon, François-Marie; Lu, Yonglong; Zhang, Qiang; Guan, Dabo; Gong, Peng; Kammen, Daniel M.; He, Kebin; Schellnhuber, Hans Joachim
    The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (−1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.