Search Results

Now showing 1 - 10 of 117
  • Item
    Micro Fresnel mirror array with individual mirror control
    (Bristol : IOP Publ., 2020) Poyyathuruthy Bruno, Binal; Schütze, Robert; Grunwald, Ruediger; Wallrabe, Ulrike
    We present the design and fabrication of a miniaturized array of piezoelectrically actuated high speed Fresnel mirrors with individual mirror control. These Fresnel mirrors can be used to generate propagation invariant and self-healing interference patterns. The mirrors are actuated using piezobimorph actuators, and the consequent change of the tilting angle of the mirrors changes the fringe spacing of the interference pattern generated. The array consists of four Fresnel mirrors each having an area of 2 × 2 mm2 arranged in a 2x2 configuration. The device, optimized using FEM simulations, is able to achieve maximum mirror deflections of 15 mrad, and has a resonance frequency of 28 kHz.
  • Item
    Stable coherent mode-locking based on π pulse formation in single-section lasers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Arkhipov, Rostislav; Pakhomov, Anton; Arkhipov, Mikhail; Babushkin, Ihar; Rosanov, Nikolay
    Here we consider coherent mode-locking (CML) regimes in single-section cavity lasers, taking place for pulse durations less than atomic population and phase relaxation times, which arise due to coherent Rabi oscillations of the atomic inversion. Typically, CML is introduced for lasers with two sections, the gain and absorber ones. Here we show that, for certain combination of the cavity length and relaxation parameters, a very stable CML in a laser, containing only gain section, may arise. The mode-locking is unconditionally self-starting and appears due to balance of intra-pulse de-excitation and slow interpulse-scale pump-induced relaxation processes. We also discuss the scaling of the system to shorter pulse durations, showing a possibility of mode-locking for few-cycle pulses.
  • Item
    Magnesium Contact Ions Stabilize the Tertiary Structure of Transfer RNA: Electrostatics Mapped by Two-Dimensional Infrared Spectra and Theoretical Simulations
    (Washington, DC : Soc., 2021) Schauss, Jakob; Kundu, Achintya; Fingerhut, Benjamin P.; Elsaesser, Thomas
    Ions interacting with hydrated RNA play a central role in defining its secondary and tertiary structure. While spatial arrangements of ions, water molecules, and phosphate groups have been inferred from X-ray studies, the role of electrostatic and other noncovalent interactions in stabilizing compact folded RNA structures is not fully understood at the molecular level. Here, we demonstrate that contact ion pairs of magnesium (Mg2+) and phosphate groups embedded in local water shells stabilize the tertiary equilibrium structure of transfer RNA (tRNA). Employing dialyzed tRNAPhe from yeast and tRNA from Escherichia coli, we follow the population of Mg2+ sites close to phosphate groups of the ribose-phosphodiester backbone step by step, combining linear and nonlinear infrared spectroscopy of phosphate vibrations with molecular dynamics simulations and ab initio vibrational frequency calculations. The formation of up to six Mg2+/phosphate contact pairs per tRNA and local field-induced reorientations of water molecules balance the phosphate-phosphate repulsion in nonhelical parts of tRNA, thus stabilizing the folded structure electrostatically. Such geometries display limited sub-picosecond fluctuations in the arrangement of water molecules and ion residence times longer than 1 µs. At higher Mg2+ excess, the number of contact ion pairs per tRNA saturates around 6 and weakly interacting ions prevail. Our results suggest a predominance of contact ion pairs over long-range coupling of the ion atmosphere and the biomolecule in defining and stabilizing the tertiary structure of tRNA. © 2020 American Chemical Society.
  • Item
    Imaging plasma formation in isolated nanoparticles with ultrafast resonant scattering
    (Melville, NY : AIP Publishing LLC, 2020) Rupp, Daniela; Flückiger, Leonie; Adolph, Marcus; Colombo, Alessandro; Gorkhover, Tais; Harmand, Marion; Krikunova, Maria; Müller, Jan Philippe; Oelze, Tim; Ovcharenko, Yevheniy; Richter, Maria; Sauppe, Mario; Schorb, Sebastian; Treusch, Rolf; Wolter, David; Bostedt, Christoph; Möller, Thomas
    We have recorded the diffraction patterns from individual xenon clusters irradiated with intense extreme ultraviolet pulses to investigate the influence of light-induced electronic changes on the scattering response. The clusters were irradiated with short wavelength pulses in the wavelength regime of different 4d inner-shell resonances of neutral and ionic xenon, resulting in distinctly different optical properties from areas in the clusters with lower or higher charge states. The data show the emergence of a transient structure with a spatial extension of tens of nanometers within the otherwise homogeneous sample. Simulations indicate that ionization and nanoplasma formation result in a light-induced outer shell in the cluster with a strongly altered refractive index. The presented resonant scattering approach enables imaging of ultrafast electron dynamics on their natural timescale.
  • Item
    Dialogue on analytical and ab initio methods in attoscience
    (Berlin ; Heidelberg : Springer, 2021) Armstrong, Gregory S.J.; Khokhlova, Margarita A.; Labeye, Marie; Maxwell, Andrew S.; Pisanty, Emilio; Ruberti, Marco
    The perceived dichotomy between analytical and ab initio approaches to theory in attosecond science is often seen as a source of tension and misconceptions. This Topical Review compiles the discussions held during a round-table panel at the 'Quantum Battles in Attoscience' cecam virtual workshop, to explore the sources of tension and attempt to dispel them. We survey the main theoretical tools of attoscience-covering both analytical and numerical methods-and we examine common misconceptions, including the relationship between ab initio approaches and the broader numerical methods, as well as the role of numerical methods in 'analytical' techniques. We also evaluate the relative advantages and disadvantages of analytical as well as numerical and ab initio methods, together with their role in scientific discovery, told through the case studies of two representative attosecond processes: non-sequential double ionisation and resonant high-harmonic generation. We present the discussion in the form of a dialogue between two hypothetical theoreticians, a numericist and an analytician, who introduce and challenge the broader opinions expressed in the attoscience community.
  • Item
    Phosphate Vibrations Probe Electric Fields in Hydrated Biomolecules: Spectroscopy, Dynamics, and Interactions
    (Washington, DC : Soc., 2021) Elsaesser, Thomas; Schauss, Jakob; Kundu, Achintya; Fingerhut, Benjamin P.
    Electric interactions have a strong impact on the structure and dynamics of biomolecules in their native water environment. Given the variety of water arrangements in hydration shells and the femto- to subnanosecond time range of structural fluctuations, there is a strong quest for sensitive noninvasive probes of local electric fields. The stretching vibrations of phosphate groups, in particular the asymmetric (PO2)− stretching vibration νAS(PO2)−, allow for a quantitative mapping of dynamic electric fields in aqueous environments via a field-induced redshift of their transition frequencies and concomitant changes of vibrational line shapes. We present a systematic study of νAS(PO2)− excitations in molecular systems of increasing complexity, including dimethyl phosphate (DMP), short DNA and RNA duplex structures, and transfer RNA (tRNA) in water. A combination of linear infrared absorption, two-dimensional infrared (2D-IR) spectroscopy, and molecular dynamics (MD) simulations gives quantitative insight in electric-field tuning rates of vibrational frequencies, electric field and fluctuation amplitudes, and molecular interaction geometries. Beyond neat water environments, the formation of contact ion pairs of phosphate groups with Mg2+ ions is demonstrated via frequency upshifts of the νAS(PO2)− vibration, resulting in a distinct vibrational band. The frequency positions of contact geometries are determined by an interplay of attractive electric and repulsive exchange interactions.
  • Item
    Two-color two-dimensional terahertz spectroscopy: A new approach for exploring even-order nonlinearities in the nonperturbative regime
    (Melville, NY : American Institute of Physics, 2021) Woerner, Michael; Ghalgaoui, Ahmed; Reimann, Klaus; Elsaesser, Thomas
    Nonlinear two-dimensional terahertz (2D-THz) spectroscopy at frequencies of the emitted THz signal different from the driving frequencies allows for exploring the regime of (off-)resonant even-order nonlinearities in condensed matter. To demonstrate the potential of this method, we study two phenomena in the nonlinear THz response of bulk GaAs: (i) The nonlinear THz response to a pair of femtosecond near-infrared pulses unravels novel fourth- and sixth-order contributions involving interband shift currents, Raman-like excitations of transverse-optical phonon and intervalence-band coherences. (ii) Transient interband tunneling of electrons driven by ultrashort mid-infrared pulses can be effectively controlled by a low-frequency THz field with amplitudes below 50 kV/cm. The THz field controls the electron–hole separation modifying decoherence and the irreversibility of carrier generation.
  • Item
    No light at the end of the tunnel
    (Berlin ; Heidelberg : Springer, 2021) Reiss, H.R.
    The tunneling model for laser-induced processes implies the replacement of the propagating field of a laser by an oscillatory electric field. The view of the electric field as the primary influence in charged particle interactions fails for laser processes where the propagation property is important. Electric fields lack several quintessential laser-field properties that become dominant at high intensities and/or low frequencies. Quantum tunneling is not a concept generally suited to laser light. Conversely, laser criteria do not apply to electric-field phenomena like Sauter–Schwinger pair production in the vacuum, contrary to a widespread assumption.
  • Item
    Highly efficient soft x-ray spectrometer for transient absorption spectroscopy with broadband table-top high harmonic sources
    (Melville, NY : AIP Publishing LLC, 2021) Kleine, Carlo; Ekimova, Maria; Winghart, Marc-Oliver; Eckert, Sebastian; Reichel, Oliver; Löchel, Heike; Probst, Jürgen; Braig, Christoph; Seifert, Christian; Erko, Alexei; Sokolov, Andrey; Vrakking, Marc J. J.; Nibbering, Erik T. J.; Rouzée, Arnaud
    We present a novel soft x-ray spectrometer for ultrafast absorption spectroscopy utilizing table-top femtosecond high-order harmonic sources. Where most commercially available spectrometers rely on spherical variable line space gratings with a typical efficiency on the order of 3% in the first diffractive order, this spectrometer, based on a Hettrick-Underwood design, includes a reflective zone plate as a dispersive element. An improved efficiency of 12% at the N K-edge is achieved, accompanied by a resolving power of 890. The high performance of the soft x-ray spectrometer is further demonstrated by comparing nitrogen K-edge absorption spectra from calcium nitrate in aqueous solution obtained with our high-order harmonic source to previous measurements performed at the electron storage ring facility BESSY II.
  • Item
    Field-Induced Tunneling Ionization and Terahertz-Driven Electron Dynamics in Liquid Water
    (Washington, DC : ACS, 2020) Ghalgaoui, Ahmed; Koll, Lisa-Marie; Schütte, Bernd; Fingerhut, Benjamin P.; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas
    Liquid water at ambient temperature displays ultrafast molecular motions and concomitant fluctuations of very strong electric fields originating from the dipolar H2O molecules. We show that such random intermolecular fields induce the tunnel ionization of water molecules, which becomes irreversible if an external terahertz (THz) pulse imposes an additional directed electric field on the liquid. Time-resolved nonlinear THz spectroscopy maps charge separation, transport, and localization of the released electrons on a few-picosecond time scale. The highly polarizable localized electrons modify the THz absorption spectrum and refractive index of water, a manifestation of a highly nonlinear response. Our results demonstrate how the interplay of local electric field fluctuations and external electric fields allows for steering charge dynamics and dielectric properties in aqueous systems. Copyright © 2020 American Chemical Society.