Search Results

Now showing 1 - 3 of 3
  • Item
    Calibration of the GERDA experiment
    (Berlin ; Heidelberg : Springer, 2021) Agostini, M.; Araujo, G.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zatschler, B.; Zhitnikov, I.; Zhukov, S.V.; Zinatulina, D.; Zschocke, A.; Zsigmond, A.J.; Zuber, K.; Biancacci, V.; Zuzel, G.; Bossio, E.; Bothe, V.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Comellato, T.; D'Andrea, V.; Demidova, E.V.; Marco, N.D.; Doroshkevich, E.; Fischer, F.; Fomina, M.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hemmer, S.; Hiller, R.; Hofmann, W.; Huang, J.; Hult, M.; Inzhechik, L.V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kermaïdic, Y.; Khushbakht, H.; Kihm, T.; Kirpichnikov, I.V.; Klimenko, A.; Kneißl, R.; Knöpfle, K.T.; Kochetov, O.; Kornoukhov, V.N.; Krause, P.; Kuzminov, V.V.; Laubenstein, M.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Manzanillas, L.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Müller, Y.; Nemchenok, I.; Pandola, L.; Pelczar, K.; Pertoldi, L.; Piseri, P.; Pullia, A.; Ransom, C.; Rauscher, L.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Schönert, S.; Schreiner, J.; Schütt, M.; Schütz, A.-K.; Schulz, O.; Schwarz, M.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Shtembari, L.; Simgen, H.; Smolnikov, A.; Stukov, D.; Vasenko, A.A.; Veresnikova, A.; Vignoli, C.; von Sturm, K.; Wester, T.
    The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double-β decay in 76Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at Qββ =2039.061(7) keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double-β decays allowed by the Standard Model. The energy resolution and stability were determined and monitored as a function of time using data from regular 228Th calibrations. In this work, we describe the calibration process and associated data analysis of the full Gerda dataset, tailored to preserve the excellent resolution of the individual germanium detectors when combining data over several years.
  • Item
    Characterization of inverted coaxial 76 Ge detectors in GERDA for future double- β decay experiments
    (Berlin ; Heidelberg : Springer, 2021) Agostini, M.; Araujo, G.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Wojcik, M.; Yanovich, E.; Zatschler, B.; Zhitnikov, I.; Zhukov, S.V.; Zinatulina, D.; Zschocke, A.; Zsigmond, A.J.; Zuber, K.; Zuzel, G.; Biancacci, V.; Bossio, E.; Bothe, V.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Comellato, T.; D'Andrea, V.; Demidova, E.V.; Marco, N.D.; Doroshkevich, E.; Fischer, F.; Fomina, M.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hemmer, S.; Hofmann, W.; Huang, J.; Hult, M.; Inzhechik, L.V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kermaïdic, Y.; Khushbakht, H.; Kihm, T.; Kirpichnikov, I.V.; Klimenko, A.; Kneißl, R.; Knöpfle, K.T.; Kochetov, O.; Kornoukhov, V.N.; Krause, P.; Kuzminov, V.V.; Laubenstein, M.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Manzanillas, L.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Müller, Y.; Nemchenok, I.; Pandola, L.; Pelczar, K.; Pertoldi, L.; Piseri, P.; Pullia, A.; Ransom, C.; Rauscher, L.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Schönert, S.; Schreiner, J.; Schütt, M.; Schütz, A.-K.; Schulz, O.; Schwarz, M.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Shtembari, L.; Simgen, H.; Smolnikov, A.; Stukov, D.; Vasenko, A.A.; Veresnikova, A.; Vignoli, C.; von Sturm, K.; Wester, T.; Wiesinger, C.
    Neutrinoless double-β decay of 76Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in 76Ge. IC detectors combine the large mass of the traditional semi-coaxial Ge detectors with the superior resolution and pulse shape discrimination power of point contact detectors which exhibited so far much lower mass. Their performance has been found to be satisfactory both when operated in vacuum cryostat and bare in liquid argon within the Gerda setup. The measured resolutions at the Q-value for double-β decay of 76Ge (Qββ = 2039 keV) are about 2.1 keV full width at half maximum in vacuum cryostat. After 18 months of operation within the ultra-low background environment of the GERmanium Detector Array (Gerda) experiment and an accumulated exposure of 8.5 kg⋅year, the background index after analysis cuts is measured to be 4.9+7.3−3.4×10−4 counts/(keV⋅kg⋅year) around Qββ. This work confirms the feasibility of IC detectors for the next-generation experiment Legend.
  • Item
    Reciprocal space slicing: A time-efficient approach to femtosecond x-ray diffraction
    (Melville, NY : AIP Publishing LLC, 2021) Zeuschner, S.P.; Mattern, M.; Pudell, J.-E.; von Reppert, A.; Rössle, M.; Leitenberger, W.; Schwarzkopf, J.; Boschker, J.E.; Herzog, M.; Bargheer, M.
    An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit ( 2θ ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2.