Search Results

Now showing 1 - 10 of 30
  • Item
    Mode competition in broad-ridge-waveguide lasers
    (Bristol : IOP Publ., 2020) Koester, J.-P.; Putz, A.; Wenzel, H.; Wünsche, H.-J.; Radziunas, M.; Stephan, H.; Wilkens, M.; Zeghuzi, A.; Knigge, A.
    The lateral brightness achievable with high-power GaAs-based laser diodes having long and broad waveguides is commonly regarded to be limited by the onset of higher-order lateral modes. For the study of the lateral-mode competition two complementary simulation tools are applied, representing different classes of approximations. The first tool bases on a completely incoherent superposition of mode intensities and disregards longitudinal effects like spatial hole burning, whereas the second tool relies on a simplified carrier transport and current flow. Both tools yield agreeing power-current characteristics that fit the data measured for 5-23 µm wide ridges. Also, a similarly good qualitative conformance of the near and far fields is found. However, the threshold of individual modes, the partition of power between them at a given current, and details of the near and far fields show differences. These differences are the consequence of a high sensitivity of the mode competition to details of the models and of the device structure. Nevertheless, it can be concluded concordantly that the brightness rises with increasing ridge width irrespective of the onset of more and more lateral modes. The lateral brightness W mm-1at 10 MW cm-2 power density on the front facet of the investigated laser with widest ridge (23 µm) is comparable with best values known from much wider broad-area lasers. In addition, we show that one of the simulation tools is able to predict beam steering and coherent beam coupling without introducing any phenomenological coupling coefficient or asymmetries. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Revealing all states of dewetting of a thin gold layer on a silicon surface by nanosecond laser conditioning
    (Amsterdam : Elsevier, 2021) Ernst, Owen C.; Uebel, David; Kayser, Stefan; Lange, Felix; Teubner, Thomas; Boeck, Torsten
    Dewetting is a ubiquitous phenomenon which can be applied to the laser synthesis of nanoparticles. A classical spinodal dewetting process takes place in four successive states, which differ from each other in their morphology. In this study all states are revealed by interaction of pulsed nanosecond UV laser light with thin gold layers with thicknesses between 1 nm and 10 nm on (100) silicon wafers. The specific morphologies of the dewetting states are discussed with particular emphasis on the state boundaries. The main parameter determining which state is formed is not the duration for which the gold remains liquid, but rather the input energy provided by the laser. This shows that each state transition has a separate measurable activation energy. The temperature during the nanosecond pulses and the duration during which the gold remains liquid was determined by simulation using the COMSOL Multiphysics® software package. Using these calculations, an accurate local temperature profile and its development over time was simulated. An analytical study of the morphologies and formed structures was performed using Minkowski measures. With aid of this tool, the laser induced structures were compared with thermally annealed samples, with perfectly ordered structures and with perfectly random structures. The results show that both, structures of the laser induced and the annealed samples, strongly resemble the perfectly ordered structures. This reveals a close relationship between these structures and suggests that the phenomenon under investigation is indeed a spinodal dewetting generated by an internal material wave function. The purposeful generation of these structures and the elucidation of the underlying mechanism of dewetting by short pulse lasers may assist the realisation of various technical elements such as nanowires in science and industry. © 2020
  • Item
    Analysis and simulations for a phase-field fracture model at finite strains based on modified invariants
    (Berlin : Wiley-VCH, 2020) Thomas, Marita; Bilgen, Carola; Weinberg, Kerstin
    Phase-field models have already been proven to predict complex fracture patterns for brittle fracture at small strains. In this paper we discuss a model for phase-field fracture at finite deformations in more detail. Among the identification of crack location and projection of crack growth the numerical stability is one of the main challenges in solid mechanics. Here we present a phase-field model at finite strains, which takes into account the anisotropy of damage by applying an anisotropic split of the modified invariants of the right Cauchy-Green strain tensor. We introduce a suitable weak notion of solution that also allows for a spatial and temporal discretization of the model. In this framework we study the existence of solutions and we show that the time-discrete solutions converge in a weak sense to a solution of the time-continuous formulation of the model. Numerical examples in two and three space dimensions illustrate the range of validity of the analytical results.
  • Item
    Experimental proof of Joule heating-induced switched-back regions in OLEDs
    (London : Nature Publishing Group, 2020) Kirch, Anton; Fische, Axel; Liero, Matthias; Fuhrmann, Jürgen; Glitzky, Annegret; Reineke, Sebastian
    Organic light-emitting diodes (OLEDs) have become a major pixel technology in the display sector, with products spanning the entire range of current panel sizes. The ability to freely scale the active area to large and random surfaces paired with flexible substrates provides additional application scenarios for OLEDs in the general lighting, automotive, and signage sectors. These applications require higher brightness and, thus, current density operation compared to the specifications needed for general displays. As extended transparent electrodes pose a significant ohmic resistance, OLEDs suffering from Joule self-heating exhibit spatial inhomogeneities in electrical potential, current density, and hence luminance. In this article, we provide experimental proof of the theoretical prediction that OLEDs will display regions of decreasing luminance with increasing driving current. With a two-dimensional OLED model, we can conclude that these regions are switched back locally in voltage as well as current due to insufficient lateral thermal coupling. Experimentally, we demonstrate this effect in lab-scale devices and derive that it becomes more severe with increasing pixel size, which implies its significance for large-area, high-brightness use cases of OLEDs. Equally, these non-linear switching effects cannot be ignored with respect to the long-term operation and stability of OLEDs; in particular, they might be important for the understanding of sudden-death scenarios. © 2020, The Author(s).
  • Item
    Maximally dissipative solutions for incompressible fluid dynamics
    (Cham (ZG) : Springer International Publishing AG, 2021) Lasarzik, Robert
    We introduce the new concept of maximally dissipative solutions for a general class of isothermal GENERIC systems. Under certain assumptions, we show that maximally dissipative solutions are well-posed as long as the bigger class of dissipative solutions is non-empty. Applying this result to the Navier–Stokes and Euler equations, we infer global well-posedness of maximally dissipative solutions for these systems. The concept of maximally dissipative solutions coincides with the concept of weak solutions as long as the weak solutions inherits enough regularity to be unique.
  • Item
    Topology- and Geometry-Controlled Functionalization of Nanostructured Metamaterials
    (Basel : MDPI, 2023) Fomin, Vladimir M.; Marquardt, Oliver
    [no abstract available]
  • Item
    Modeling of Chemical Reaction Systems with Detailed Balance Using Gradient Structures
    (New York, NY [u.a.] : Springer Science + Business Media B.V., 2020) Maas, Jan; Mielke, Alexander
    We consider various modeling levels for spatially homogeneous chemical reaction systems, namely the chemical master equation, the chemical Langevin dynamics, and the reaction-rate equation. Throughout we restrict our study to the case where the microscopic system satisfies the detailed-balance condition. The latter allows us to enrich the systems with a gradient structure, i.e. the evolution is given by a gradient-flow equation. We present the arising links between the associated gradient structures that are driven by the relative entropy of the detailed-balance steady state. The limit of large volumes is studied in the sense of evolutionary Γ-convergence of gradient flows. Moreover, we use the gradient structures to derive hybrid models for coupling different modeling levels.
  • Item
    Numerical upscaling of parametric microstructures in a possibilistic uncertainty framework with tensor trains
    (Heidelberg : Springer, 2022) Eigel, Martin; Gruhlke, Robert; Moser, Dieter; Grasedyck, Lars
    A fuzzy arithmetic framework for the efficient possibilistic propagation of shape uncertainties based on a novel fuzzy edge detection method is introduced. The shape uncertainties stem from a blurred image that encodes the distribution of two phases in a composite material. The proposed framework employs computational homogenisation to upscale the shape uncertainty to a effective material with fuzzy material properties. For this, many samples of a linear elasticity problem have to be computed, which is significantly sped up by a highly accurate low-rank tensor surrogate. To ensure the continuity of the underlying mapping from shape parametrisation to the upscaled material behaviour, a diffeomorphism is constructed by generating an appropriate family of meshes via transformation of a reference mesh. The shape uncertainty is then propagated to measure the distance of the upscaled material to the isotropic and orthotropic material class. Finally, the fuzzy effective material is used to compute bounds for the average displacement of a non-homogenized material with uncertain star-shaped inclusion shapes.
  • Item
    Introducing pinMOS Memory: A Novel, Nonvolatile Organic Memory Device
    (Weinheim : Wiley-VCH, 2020) Zheng, Yichu; Fischer, Axel; Sawatzki, Michael; Doan, Duy Hai; Liero, Matthias; Glitzky, Annegret; Reineke, Sebastian; Mannsfeld, Stefan C.B.
    In recent decades, organic memory devices have been researched intensely and they can, among other application scenarios, play an important role in the vision of an internet of things. Most studies concentrate on storing charges in electronic traps or nanoparticles while memory types where the information is stored in the local charge up of an integrated capacitance and presented by capacitance received far less attention. Here, a new type of programmable organic capacitive memory called p-i-n-metal-oxide-semiconductor (pinMOS) memory is demonstrated with the possibility to store multiple states. Another attractive property is that this simple, diode-based pinMOS memory can be written as well as read electrically and optically. The pinMOS memory device shows excellent repeatability, an endurance of more than 104 write-read-erase-read cycles, and currently already over 24 h retention time. The working mechanism of the pinMOS memory under dynamic and steady-state operations is investigated to identify further optimization steps. The results reveal that the pinMOS memory principle is promising as a reliable capacitive memory device for future applications in electronic and photonic circuits like in neuromorphic computing or visual memory systems. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Multiscale simulations of the electronic structure of III-nitride quantum wells with varied indium content: Connecting atomistic and continuum-based models
    (Melville, NY : American Inst. of Physics, 2021) Chaudhuri, D.; O’Donovan, M.; Streckenbach, T.; Marquardt, O.; Farrell, P.; Patra, S.K.; Koprucki, T.; Schulz, S.
    Carrier localization effects in III-N heterostructures are often studied in the frame of modified continuum-based models utilizing a single-band effective mass approximation. However, there exists no comparison between the results of a modified continuum model and atomistic calculations on the same underlying disordered energy landscape. We present a theoretical framework that establishes a connection between atomistic tight-binding theory and continuum-based electronic structure models, here a single-band effective mass approximation, and provide such a comparison for the electronic structure of (In,Ga)N quantum wells. In our approach, in principle, the effective masses are the only adjustable parameters since the confinement energy landscape is directly obtained from tight-binding theory. We find that the electronic structure calculated within effective mass approximation and the tight-binding model differ noticeably. However, at least in terms of energy eigenvalues, an improved agreement between the two methods can be achieved by adjusting the band offsets in the continuum model, enabling, therefore, a recipe for constructing a modified continuum model that gives a reasonable approximation of the tight-binding energies. Carrier localization characteristics for energetically low lying, strongly localized states differ, however, significantly from those obtained using the tight-binding model. For energetically higher lying, more delocalized states, good agreement may be achieved. Therefore, the atomistically motivated continuum-based single-band effective mass model established provides a good, computationally efficient alternative to fully atomistic investigations, at least at when targeting questions related to higher temperatures and carrier densities in (In,Ga)N systems.