Search Results

Now showing 1 - 2 of 2
  • Item
    Quantum-Optical Spectrometry in Relativistic Laser-Plasma Interactions Using the High-Harmonic Generation Process: A Proposal
    (Basel : MDPI, 2021) Lamprou, Theocharis; Lopez-Martens, Rodrigo; Haessler, Stefan; Liontos, Ioannis; Kahaly, Subhendu; Rivera-Dean, Javier; Stammer, Philipp; Pisanty, Emilio; Ciappina, Marcelo F.; Lewenstein, Maciej; Tzallas, Paraskevas
    Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser–matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser–field interaction product, such as high-order harmonics. In this case, the harmonic spectrum is reflected in the photon number distribution of the infrared (IR) driving field after its interaction with the high harmonic generation medium. The method was implemented in non-relativistic interactions using high harmonics produced by the interaction of strong laser pulses with atoms and semiconductors. Very recently, it was used for the generation of non-classical light states in intense laser–atom interaction, building the basis for studies of quantum electrodynamics in strong laser-field physics and the development of a new class of non-classical light sources for applications in quantum technology. Here, after a brief introduction of the QS method, we will discuss how the QS can be applied in relativistic laser–plasma interactions and become the driving factor for initiating investigations on relativistic quantum electrodynamics.
  • Item
    Generation of Multiple Vector Optical Bottle Beams
    (Basel : MDPI, 2021) Khonina, Svetlana N.; Porfirev, Alexey P.; Volotovskiy, Sergey G.; Ustinov, Andrey V.; Fomchenkov, Sergey A.; Pavelyev, Vladimir S.; Schröter, Siegmund; Duparré, Michael
    We propose binary diffractive optical elements, combining several axicons of different types (axis-symmetrical and spiral), for the generation of a 3D intensity distribution in the form of multiple vector optical ‘bottle’ beams, which can be tailored by a change in the polarization state of the illumination radiation. The spatial dynamics of the obtained intensity distribution with different polarization states (circular and cylindrical of various orders) were investigated in paraxial mode numerically and experimentally. The designed binary axicons were manufactured using the e-beam lithography technique. The proposed combinations of optical elements can be used for the generation of vector optical traps in the field of laser trapping and manipulation, as well as for performing the spatial transformation of the polarization state of laser radiation, which is crucial in the field of laser-matter interaction for the generation of special morphologies of laser-induced periodic surface structures.