Search Results

Now showing 1 - 3 of 3
  • Item
    A physical origin of cross-polarization and higher-order modes in two-dimensional (2D) grating couplers and the related device performance limitations
    (Bristol : IOP Publishing, 2021) Georgieva, Galina; Voigt, Karsten; Seiler, Pascal M.; Mai, Christian; Petermann, Klaus; Zimmermann, Lars
    We explore scattering effects as the physical origin of cross-polarization and higher-order modes in silicon photonic 2D grating couplers (GCs). A simplified analytical model is used to illustrate that in-plane scattering always takes place, independent of grating geometry and design coupling angle. Experimental investigations show furthermore that grating design parameters are especially related to the modal composition of both the target- and the cross-polarization. Scattering effects and the associated cross-polarization and higher-order modes are indicated as the main reason for the higher 2D GC insertion loss compared to standard 1D GCs. In addition, they can be responsible for a variable 2D GC spectrum shape, bandwidth and polarization dependent loss.
  • Item
    Raman spectroscopy in layered hybrid organic-inorganic metal halide perovskites
    (Bristol : IOP Publishing, 2022) Spirito, Davide; Asensio, Yaiza; Hueso, Luis E.; MartĂ­n-GarcĂ­a, Beatriz
    The continuous progress in the synthesis and characterization of materials in the vast family of hybrid organic-inorganic metal halide perovskites (HOIPs) has been pushed by their exceptional properties mainly in optoelectronic applications. These works highlight the peculiar role of lattice vibrations, which strongly interact with electrons, resulting in coupled states affecting the optical properties. Among these materials, layered (2D) HOIPs have emerged as a promising material platform to address some issues of their three-dimensional counterparts, such as ambient stability and ion migration. Layered HOIPs consist of inorganic layers made of metal halide octahedra separated by layers composed of organic cations. They have attracted much interest not only for applications, but also for their rich phenomenology due to their crystal structure tunability. Here, we give an overview of the main experimental findings achieved via Raman spectroscopy in several configurations and set-ups, and how they contribute to shedding light on the complex structural nature of these fascinating materials. We focus on how the phonon spectrum comes from the interplay of several factors. First, the inorganic and organic parts, whose motions are coupled, contribute with their typical modes which are very different in energy. Nonetheless, the interaction between them is relevant, as it results in low-symmetry crystal structures. Then, the role of external stimuli, such as temperature and pressure, which induce phase transitions affecting the spectrum through change in symmetry of the lattice, octahedral tilting and arrangement of the molecules. Finally, the relevant role of the coupling between the charge carriers and optical phonons is highlighted.
  • Item
    Silicon-organic hybrid photonics: Overview of recent advances, electro-optical effects and CMOS-integration concepts
    (Bristol : IOP Publishing, 2021) Steglich, Patrick; Mai, Christian; Villringer, Claus; Dietzel, Birgit; Bondarenko, Siegfried; Ksianzou, Viachaslau; Villasmunta, Francesco; Zesch, Christoph; Pulwer, Silvio; Burger, Martin; Bauer, Joachim; Heinrich, Friedhelm; Schrader, Sigurd; Vitale, Francesco; De Matteis, Fabio; Prosposito, Paolo; Casalboni, Mauro; Mai, Andreas
    In recent decades, much research effort has been invested in the development of photonic integrated circuits, and silicon-on-insulator technology has been established as a reliable platform for highly scalable silicon-based electro-optical modulators. However, the performance of such devices is restricted by the inherent material properties of silicon. An approach to overcoming these deficiencies is to integrate organic materials with exceptionally high optical nonlinearities into a silicon-on-insulator photonic platform. Silicon–organic hybrid photonics has been shown to overcome the drawbacks of silicon-based modulators in terms of operating speed, bandwidth, and energy consumption. This work reviews recent advances in silicon–organic hybrid photonics and covers the latest improvements to single components and device concepts. Special emphasis is given to the in-device performance of novel electro-optical polymers and the use of different electro-optical effects, such as the linear and quadratic electro-optical effect, as well as the electric-field-induced linear electro-optical effect. Finally, the inherent challenges of implementing non-linear optical polymers on a silicon photonic platform are discussed and a perspective for future directions is given.