Search Results

Now showing 1 - 5 of 5
  • Item
    All-optical Stückelberg spectroscopy of strongly driven Rydberg states
    (College Park, MD : APS, 2022) Bengs, Ulrich; Patchkovskii, Serguei; Ivanov, Misha; Zhavoronkov, Nickolai
    The AC Stark shift of electronic levels is ubiquitous in the interaction of intense light fields with atoms and molecules. As the light intensity changes on the rising and falling edges of a femtosecond laser pulse, it shifts the Rydberg states in and out of multiphoton resonances with the ground state. The two resonant pathways for transient excitation arising at the leading and the trailing edges of the pulse generate Young's type interference, generally referred to as the Stückelberg oscillations. Here we report the observation of the Stückelberg oscillations in the intensity of the coherent free-induction decay following resonant multiphoton excitation. Moreover, combining the experimental results with accurate numerical simulations and a simple model, we use the Stückelberg oscillations to recover the population dynamics of strongly driven Rydberg states inside the laser pulse by all-optical measurements after the end of the pulse. We demonstrate the potential of this spectroscopy to characterize lifetimes of Rydberg states dressed by laser fields with strengths far exceeding the Coulomb field between the Rydberg electron and the core.
  • Item
    Coherent control of the photoinduced transition in a strongly correlated material
    (College Park, MD : APS, 2022) Molinero, Eduardo B.; Silva, Rui E. F.
    The use of intense tailored light fields is the perfect tool to achieve ultrafast control of electronic properties in quantum materials. Among them, Mott insulators are materials in which strong electron-electron interactions drive the material into an insulating phase. When shining a Mott insulator with a strong laser pulse, the electric field may induce the creation of doublon-hole pairs, triggering a photoinduced transition into a metallic state. In this paper, we take advantage of the threshold character of this photoinduced transition and we propose a setup that consists of a midinfrared laser pulse and a train of short pulses separated by a half period of the midinfrared with alternating phases. By varying the time delay between the two pulses and the internal carrier envelope phase of the short pulses, we achieve control of the phase transition, which leaves its fingerprint at its high harmonic spectrum.
  • Item
    Tracking ultrafast solid-state dynamics using high harmonic spectroscopy
    (College Park, MD : APS, 2021) Bionta, Mina R.; Haddad, Elissa; Leblanc, Adrien; Gruson, Vincent; Lassonde, Philippe; Ibrahim, Heide; Chaillou, Jérémie; Émond, Nicolas; Otto, Martin R.; Siwick, Bradley J.; Chaker, Mohamed; Légaré, François
    WWe establish time-resolved high harmonic generation (tr-HHG) as a powerful spectroscopy method for tracking photoinduced dynamics in strongly correlated materials through a detailed investigation of the insulator-to-metal phase transitions in vanadium dioxide. We benchmark the technique by comparing our measurements to established momentum-resolved ultrafast electron diffraction, and theoretical density functional calculations. Tr-HHG allows distinguishing of individual dynamic channels, including a transition to a thermodynamically hidden phase. In addition, the HHG yield is shown to be modulated at a frequency characteristic of a coherent phonon of the equilibrium monoclinic phase over a wide range of excitation fluences. These results demonstrate that tr-HHG is capable of tracking complex dynamics in solids through its sensitivity to the band structure.
  • Item
    Space-time focusing and coherence properties of supercontinua in multipass cells
    (College Park, MD : APS, 2021) Mei, Chao; Steinmeyer, Günter
    The situation of self-compression and concomitant supercontinuum generation in a multipass cell is analyzed in numerical simulations. This study focuses on multipass cells that contain a dielectric slab as nonlinear medium and overcompensate the dispersion of the slab with intracavity dispersive coatings. A 2D+1 unidirectional pulse propagation equation is utilized to simulate the pulse evolution through successive passes. We observe a previously unreported effect of space-time focusing, leading to a pronounced blue shift, similar to what had been observed in filament compression experiments before. This effect competes with detrimental pulse breakup, which can nevertheless be mitigated under suitable choice of cavity parameters. We further analyze resulting coherence properties, in both the time and frequency domains. Our analysis shows highly favorable properties of multipass cell compression schemes when nonlinearity and dispersion are distributed over as many cavity passes as possible. This quasicontinuous approach is particularly promising for spectral broadening schemes that allow for stabilization of the carrier-envelope phase.
  • Item
    Uniform optical gain as a non-Hermitian control knob
    (College Park, MD : APS, 2022) Hashemi, A.; Busch, K.; Ozdemir, S.K.; El-Ganainy, R.
    Non-Hermitian optics utilizes judicious engineering of the spatial and spectral distribution of gain and loss in order to tailor the behavior of photonic systems in ways that could not be achieved by modulating only the real part of the refractive index. In this respect, a question that has never been addressed is whether a uniform distribution of gain or loss can also lead to nontrivial non-Hermitian effects in linear systems, beyond just signal amplification or decay. Here, we investigate this problem and demonstrate that the application of uniform gain to a symmetric photonic molecule (PM) can reverse the optical energy distribution inside the structure. For a PM composed of two coupled resonators, this translates into changing the optical energy distribution inside the resonators. For a PM formed through scattering or defect-induced intermodal coupling in a ring resonator, the applied gain, despite being uniform and symmetric, can impose a strong chirality and switch the direction of light propagation from dominantly clockwise to dominantly counterclockwise. These predictions are confirmed by using both coupled mode formalism and full-wave finite-element simulations. Our work establishes a different direction in the field of non-Hermitian optics where interesting behavior can be engineered not only by unbalancing the non-Hermitian parameter but also by changing its average value - a feature that was overlooked in previous works.