Search Results

Now showing 1 - 2 of 2
  • Item
    Coherent interaction of atoms with a beam of light confined in a light cage
    (London : Nature Publishing Group, 2021) Davidson-Marquis, Flavie; Gargiulo, Julian; Gómez-López, Esteban; Jang, Bumjoon; Kroh, Tim; Müller, Chris; Ziegler, Mario; Maier, Stefan A.; Kübler, Harald; Schmidt, Markus A.; Benson, Oliver
    Controlling coherent interaction between optical fields and quantum systems in scalable, integrated platforms is essential for quantum technologies. Miniaturised, warm alkali-vapour cells integrated with on-chip photonic devices represent an attractive system, in particular for delay or storage of a single-photon quantum state. Hollow-core fibres or planar waveguides are widely used to confine light over long distances enhancing light-matter interaction in atomic-vapour cells. However, they suffer from inefficient filling times, enhanced dephasing for atoms near the surfaces, and limited light-matter overlap. We report here on the observation of modified electromagnetically induced transparency for a non-diffractive beam of light in an on-chip, laterally-accessible hollow-core light cage. Atomic layer deposition of an alumina nanofilm onto the light-cage structure was utilised to precisely tune the high-transmission spectral region of the light-cage mode to the operation wavelength of the atomic transition, while additionally protecting the polymer against the corrosive alkali vapour. The experiments show strong, coherent light-matter coupling over lengths substantially exceeding the Rayleigh range. Additionally, the stable non-degrading performance and extreme versatility of the light cage provide an excellent basis for a manifold of quantum-storage and quantum-nonlinear applications, highlighting it as a compelling candidate for all-on-chip, integrable, low-cost, vapour-based photon delay.
  • Item
    Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate
    (London : Nature Publishing Group, 2020) Ouillé, Marie; Vernier, Aline; Böhle, Frederik; Bocoum, Maïmouna; Jullien, Aurélie; Lozano, Magali; Rousseau, Jean-Philippe; Cheng, Zhao; Gustas, Dominykas; Blumenstein, Andreas; Simon, Peter; Haessler, Stefan; Faure, Jérôme; Nagy, Tamas; Lopez-Martens, Rodrigo
    The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons. © 2020, The Author(s).