Search Results

Now showing 1 - 10 of 19
  • Item
    Multiple fermion scattering in the weakly coupled spin-chain compound YbAlO3
    (London : Nature Publishing Group, 2021) Nikitin, S.; Nishimoto, S.; Fan, Y.; Wu, J.; Wu, L.; Sukhanov, A.; Brando, M.; Pavlovskii, N.; Xu, J.; Vasylechko, L.; Yu, R.; Podlesnyak, A.
    The Heisenberg antiferromagnetic spin-1/2 chain, originally introduced almost a century ago, is one of the best studied models in quantum mechanics due to its exact solution, but nevertheless it continues to present new discoveries. Its low-energy physics is described by the Tomonaga-Luttinger liquid of spinless fermions, similar to the conduction electrons in one-dimensional metals. In this work we investigate the Heisenberg spin-chain compound YbAlO3 and show that the weak interchain coupling causes Umklapp scattering between the left- and right-moving fermions and stabilizes an incommensurate spin-density wave order at q = 2kF under finite magnetic fields. These Umklapp processes open a route to multiple coherent scattering of fermions, which results in the formation of satellites at integer multiples of the incommensurate fundamental wavevector Q = nq. Our work provides surprising and profound insight into bandstructure control for emergent fermions in quantum materials, and shows how neutron diffraction can be applied to investigate the phenomenon of coherent multiple scattering in metals through the proxy of quantum magnetic systems.
  • Item
    Experimental proof of Joule heating-induced switched-back regions in OLEDs
    (London : Nature Publishing Group, 2020) Kirch, Anton; Fische, Axel; Liero, Matthias; Fuhrmann, Jürgen; Glitzky, Annegret; Reineke, Sebastian
    Organic light-emitting diodes (OLEDs) have become a major pixel technology in the display sector, with products spanning the entire range of current panel sizes. The ability to freely scale the active area to large and random surfaces paired with flexible substrates provides additional application scenarios for OLEDs in the general lighting, automotive, and signage sectors. These applications require higher brightness and, thus, current density operation compared to the specifications needed for general displays. As extended transparent electrodes pose a significant ohmic resistance, OLEDs suffering from Joule self-heating exhibit spatial inhomogeneities in electrical potential, current density, and hence luminance. In this article, we provide experimental proof of the theoretical prediction that OLEDs will display regions of decreasing luminance with increasing driving current. With a two-dimensional OLED model, we can conclude that these regions are switched back locally in voltage as well as current due to insufficient lateral thermal coupling. Experimentally, we demonstrate this effect in lab-scale devices and derive that it becomes more severe with increasing pixel size, which implies its significance for large-area, high-brightness use cases of OLEDs. Equally, these non-linear switching effects cannot be ignored with respect to the long-term operation and stability of OLEDs; in particular, they might be important for the understanding of sudden-death scenarios. © 2020, The Author(s).
  • Item
    Nematic fluctuations in iron-oxychalcogenide Mott insulators
    (London : Nature Publishing Group, 2021) Freelon, B.; Sarkar, R.; Kamusella, S.; Brückner, F.; Grinenko, V.; Acharya, Swagata; Laad, Mukul; Craco, Luis; Yamani, Zahra; Flacau, Roxana; Swainson, Ian; Frandsen, Benjamin; Birgeneau, Robert; Liu, Yuhao; Karki, Bhupendra; Alfailakawi, Alaa; Neuefeind, Joerg C.; Everett, Michelle; Wang, Hangdong; Xu, Binjie; Fang, Minghu; Klauss, H.-H.
    Nematic fluctuations occur in a wide range physical systems from biological molecules to cuprates and iron pnictide high-Tc superconductors. It is unclear whether nematicity in pnictides arises from electronic spin or orbital degrees of freedom. We studied the iron-based Mott insulators La2O2Fe2OM2M = (S, Se), which are structurally similar to pnictides. Nuclear magnetic resonance revealed a critical slowing down of nematic fluctuations and complementary Mössbauerr spectroscopy data showed a change of electrical field gradient. The neutron pair distribution function technique detected local C2 fluctuations while neutron diffraction indicates that global C4 symmetry is preserved. A geometrically frustrated Heisenberg model with biquadratic and single-ion anisotropic terms provides the interpretation of the low temperature magnetic fluctuations. The nematicity is not due to spontaneous orbital order, instead it is linked to geometrically frustrated magnetism based on orbital selectivity. This study highlights the interplay between orbital order and spin fluctuations in nematicity.
  • Item
    Coherent interaction of atoms with a beam of light confined in a light cage
    (London : Nature Publishing Group, 2021) Davidson-Marquis, Flavie; Gargiulo, Julian; Gómez-López, Esteban; Jang, Bumjoon; Kroh, Tim; Müller, Chris; Ziegler, Mario; Maier, Stefan A.; Kübler, Harald; Schmidt, Markus A.; Benson, Oliver
    Controlling coherent interaction between optical fields and quantum systems in scalable, integrated platforms is essential for quantum technologies. Miniaturised, warm alkali-vapour cells integrated with on-chip photonic devices represent an attractive system, in particular for delay or storage of a single-photon quantum state. Hollow-core fibres or planar waveguides are widely used to confine light over long distances enhancing light-matter interaction in atomic-vapour cells. However, they suffer from inefficient filling times, enhanced dephasing for atoms near the surfaces, and limited light-matter overlap. We report here on the observation of modified electromagnetically induced transparency for a non-diffractive beam of light in an on-chip, laterally-accessible hollow-core light cage. Atomic layer deposition of an alumina nanofilm onto the light-cage structure was utilised to precisely tune the high-transmission spectral region of the light-cage mode to the operation wavelength of the atomic transition, while additionally protecting the polymer against the corrosive alkali vapour. The experiments show strong, coherent light-matter coupling over lengths substantially exceeding the Rayleigh range. Additionally, the stable non-degrading performance and extreme versatility of the light cage provide an excellent basis for a manifold of quantum-storage and quantum-nonlinear applications, highlighting it as a compelling candidate for all-on-chip, integrable, low-cost, vapour-based photon delay.
  • Item
    Improved kinetic behaviour of Mg(NH2)2-2LiH doped with nanostructured K-modified-LixTiyOz for hydrogen storage
    (London : Nature Publishing Group, 2020) Gizer, G.; Puszkiel, J.; Riglos, M.V.C.; Pistidda, C.; Ramallo-López, J.M.; Mizrahi, M.; Santoru, A.; Gemming, T.; Tseng, J.-C.; Klassen, T.; Dornheim, M.
    The system Mg(NH2)2 + 2LiH is considered as an interesting solid-state hydrogen storage material owing to its low thermodynamic stability of ca. 40 kJ/mol H2 and high gravimetric hydrogen capacity of 5.6 wt.%. However, high kinetic barriers lead to slow absorption/desorption rates even at relatively high temperatures (>180 °C). In this work, we investigate the effects of the addition of K-modified LixTiyOz on the absorption/desorption behaviour of the Mg(NH2)2 + 2LiH system. In comparison with the pristine Mg(NH2)2 + 2LiH, the system containing a tiny amount of nanostructured K-modified LixTiyOz shows enhanced absorption/desorption behaviour. The doped material presents a sensibly reduced (∼30 °C) desorption onset temperature, notably shorter hydrogen absorption/desorption times and reversible hydrogen capacity of about 3 wt.% H2 upon cycling. Studies on the absorption/desorption processes and micro/nanostructural characterizations of the Mg(NH2)2 + 2LiH + K-modified LixTiyOz system hint to the fact that the presence of in situ formed nanostructure K2TiO3 is the main responsible for the observed improved kinetic behaviour.
  • Item
    Direct molecular-level near-field plasmon and temperature assessment in a single plasmonic hotspot
    (London : Nature Publishing Group, 2020) Richard-Lacroix, Marie; Deckert, Volker
    Tip-enhanced Raman spectroscopy (TERS) is currently widely recognized as an essential but still emergent technique for exploring the nanoscale. However, our lack of comprehension of crucial parameters still limits its potential as a user-friendly analytical tool. The tip’s surface plasmon resonance, heating due to near-field temperature rise, and spatial resolution are undoubtedly three challenging experimental parameters to unravel. However, they are also the most fundamentally relevant parameters to explore, because they ultimately influence the state of the investigated molecule and consequently the probed signal. Here we propose a straightforward and purely experimental method to access quantitative information of the plasmon resonance and near-field temperature experienced exclusively by the molecules directly contributing to the TERS signal. The detailed near-field optical response, both at the molecular level and as a function of time, is evaluated using standard TERS experimental equipment by simultaneously probing the Stokes and anti-Stokes spectral intensities. Self-assembled 16-mercaptohexadodecanoic acid monolayers covalently bond to an ultra-flat gold surface were used as a demonstrator. Observation of blinking lines in the spectra also provides crucial information on the lateral resolution and indication of atomic-scale thermally induced morphological changes of the tip during the experiment. This study provides access to unprecedented molecular-level information on physical parameters that crucially affect experiments under TERS conditions. The study thereby improves the usability of TERS in day-to-day operation. The obtained information is of central importance for any experimental plasmonic investigation and for the application of TERS in the field of nanoscale thermometry. © 2020, The Author(s).
  • Item
    Calcite incorporated in silica/collagen xerogels mediates calcium release and enhances osteoblast proliferation and differentiation
    (London : Nature Publishing Group, 2020) Rößler, S.; Unbehau, R.; Gemming, T.; Kruppke, B.; Wiesmann, H.-P.; Hanke, T.
    Multiphasic silica/collagen xerogels are biomaterials designed for bone regeneration. Biphasic silica/collagen xerogels (B30) and triphasic xerogels (B30H20 or B30CK20) additionally containing hydroxyapatite or calcite were demonstrated to exhibit several structural levels. On the first level, low fibrillar collagen serves as template for silica nanoparticle agglomerates. On second level, this silica-enriched matrix phase is fiber-reinforced by collagen fibrils. In case of hydroxyapatite incorporation in B30H20, resulting xerogels exhibit a hydroxyapatite-enriched phase consisting of hydroxyapatite particle agglomerates next to silica and low fibrillar collagen. Calcite in B30CK20 is incorporated as single non-agglomerated crystal into the silica/collagen matrix phase with embedded collagen fibrils. Both the structure of multiphasic xerogels and the manner of hydroxyapatite or calcite incorporation have an influence on the release of calcium from the xerogels. B30CK20 released a significantly higher amount of calcium into a calcium-free solution over a three-week period than B30H20. In calcium containing incubation media, all xerogels caused a decrease in calcium concentration as a result of their bioactivity, which was superimposed by the calcium release for B30CK20 and B30H20. Proliferation of human bone marrow stromal cells in direct contact to the materials was enhanced on B30CK20 compared to cells on both plain B30 and B30H20.
  • Item
    Increased static dielectric constant in ZnMnO and ZnCoO thin films with bound magnetic polarons
    (London : Nature Publishing Group, 2020) Vegesna, S.V.; Bhat, V.J.; Bürger, D.; Dellith, J.; Skorupa, I.; Schmidt, O.G.; Schmidt, H.
    A novel small signal equivalent circuit model is proposed in the inversion regime of metal/(ZnO, ZnMnO, and ZnCoO) semiconductor/Si3N4 insulator/p-Si semiconductor (MSIS) structures to describe the distinctive nonlinear frequency dependent capacitance (C-F) and conductance (G-F) behaviour in the frequency range from 50 Hz to 1 MHz. We modelled the fully depleted ZnO thin films to extract the static dielectric constant (εr) of ZnO, ZnMnO, and ZnCoO. The extracted enhancement of static dielectric constant in magnetic n-type conducting ZnCoO (εr ≥ 13.0) and ZnMnO (εr ≥ 25.8) in comparison to unmagnetic ZnO (εr = 8.3–9.3) is related to the electrical polarizability of donor-type bound magnetic polarons (BMP) in the several hundred GHz range (120 GHz for CdMnTe). The formation of donor-BMP is enabled in n-type conducting, magnetic ZnO by the s-d exchange interaction between the electron spin of positively charged oxygen vacancies Vo+ in the BMP center and the electron spins of substitutional Mn2+ and Co2+ ions in ZnMnO and ZnCoO, respectively. The BMP radius scales with the Bohr radius which is proportional to the static dielectric constant. Here we show how BMP overlap can be realized in magnetic n-ZnO by increasing its static dielectric constant and guide researchers in the field of transparent spintronics towards ferromagnetism in magnetic, n-ZnO.
  • Item
    Comprehensive scan for nonmagnetic Weyl semimetals with nonlinear optical response
    (London : Nature Publishing Group, 2020) Xu, Q.; Zhang, Y.; Koepernik, K.; Shi, W.; van den Brink, J.; Felser, C.; Sun, Y.
    First-principles calculations have recently been used to develop comprehensive databases of nonmagnetic topological materials that are protected by time-reversal or crystalline symmetry. However, owing to the low symmetry requirement of Weyl points, a symmetry-based approach to identifying topological states cannot be applied to Weyl semimetals (WSMs). To date, WSMs with Weyl points in arbitrary positions are absent from the well-known databases. In this work, we develop an efficient algorithm to search for Weyl points automatically and establish a database of nonmagnetic WSMs with Weyl points near the Fermi level based on the experimental non-centrosymmetric crystal structures in the Inorganic Crystal Structure Database (ICSD). In total, 46 Weyl semimetals were discovered to have nearly clean Fermi surfaces and Weyl points within 300 meV of the Fermi level. Nine of them are chiral structures which may exhibit the quantized circular photogalvanic effect. In addition, the nonlinear optical response is studied and the giant shift current is explored. Besides nonmagnetic WSMs, our powerful tools can also be used in the discovery of magnetic topological materials.
  • Item
    Publisher Correction: Coherent interaction of atoms with a beam of light confined in a light cage
    (London : Nature Publishing Group, 2021) Davidson-Marquis, Flavie; Gargiulo, Julian; Gómez-López, Esteban; Jang, Bumjoon; Kroh, Tim; Müller, Chris; Ziegler, Mario; Maier, Stefan A.; Kübler, Harald; Schmidt, Markus A.; Benson, Oliver
    [no abstract available: correction of https://doi.org/10.1038/s41377-021-00556-z published online 31 May 2021; After publication of this article, it is noticed the article contained an error. In Table 1, the data in the line ‘Length (mm)’ is missing. The complete Table 1 is provided in this correction.]